

St. Xavier's College – Autonomous Mumbai

Syllabus For 1st Semester Courses in LIFE SCIENCE (June 2013 onwards)

Contents:

Syllabus (theory and practical) for Courses:

S.LSC.1.01: Fundamentals of Biochemistry and Analytical Techniques S.LSC.1.02: Genetics and Evolution Template of Theory Question Paper Examination grid

LIFE SCIENCE

F.Y.B.Sc.

Course Code: S.LSC.1.01

Title: Fundamentals of Biochemistry and Analytical Techniques

Learning Objectives:

The course aims to:

- Introduce the students to fundamental chemical processes and interactions that prevail in living systems
- Familiarize the students with biological molecules that are crucial for the maintenance of structure/function in an organism
- Introduce the students to the tools that may be used in the study of biomolecules and cells

Number of lectures: 45

UNIT I (15 lectur 1. Types of Bonds: Covalent And Non-Covalent	res) (1)
2. Physiological Role of Water:	(4)
a. Structure of water	
b. Dissociation and Ionic Product	
c. Ionic interaction with water	
d. Concept of pH and Buffers	
e. Buffering Systems in a living cell	
3. Carbohydrates:	(5)
a.Classification & structure of Carbohydrates.	
b. Monosaccharides: (i) Aldose & Ketose (one example each)	
(ii) C3 to C6 (one example each)	
c. Disacharides: Maltose, Cellobiose, Lactose & Sucrose	
d. Polysaccharides: Starch, Glycogen & Cellulose	
e. Properties & Reactions of Glucose & Fructose:	
i. Isomerism	
ii. Oxidation & Reduction	
iii. Esterification	
iv. Glycoside formation.	<
4. Lipids:	(5)
a. Bloor's classification of lipids	
b. Simple lipids (one example each).	
c. Complex lipids (one example each)	
d. Derived lipids (one example each)	
e. Fatty acids: Types, nomenclature & properties (upto C18)	
Unit II (15 lectur	
Unit II (15 lectur 1. Amino acids and Proteins:	
	(7)
a. Classification and Structure of Amino acids, and concept of iso-electric pH	
b. Chemical reaction with acid/alkali, Ninhydrin, Sanger's reactionc. Classification of Proteins based on function & shape	
 d. Protein Structure: Primary structure and the concept of 'N' and 'C' terminal, 	
peptide bond formation, characteristics of peptide bond, secondary structures:	
α helix & β sheets, tertiary & quaternary structure	
a nenz æ p sneets, tertiary æ quaternary structure	

2.1	Nucle	eic Acids:	(8)
	a. S	Structure of nucleosides and nucleotides	
	b. S	Structure of a poly nucleotide	
	c. F	Forms of DNA: 'A', 'B' and 'Z'	
	d. 7	Гуреs of RNA: mRNA, tRNA, rRNA, snRNAs	
		Differences between DNA and RNA	
• •	•		
_	it III		$\langle \mathbf{O} \rangle$
1.3	-	ation of organelles:	(2)
		Differential centrifugation	
•		Density gradient centrifugation	(-)
2. \$	-	ation of Macromolecules:	(6)
		Salting in and Salting out	
		Paper chromatography	
		Thin layer chromatography	
		Electrophoresis	
3. (imetry:	(2)
	a. E	Beer Lambert's law & principle of a colorimeter	
4. I		oscopy:	(5)
	a. F	Principle of Light Microscopy	
	b. I	introduction to Electron microscopy: SEM, TEM, Fluorescence microscopy and	
	(Confocal Microscopy	
~			
		S.LSC.1.01 Practicals	
1.		ncepts of Molarity/Normality and osmosis. Effect of different concentrations of	
		rose/ NaCl on RBC.	
		aration of different buffers and measurement of their pH.	
		fication of Beer's Law	
	-	aration of amino acids using ascending Paper Chromatography.	
		mation of proteins using Biuret method	
6.	-	litative Analysis- Sugars(mono & disaccharides, ketose & aldose, reducing & nor	1-
	redu	cing) Proteins & Lipids	

7. Density gradient centrifugation using sucrose.

8. Group Projects:

- a. Qualitative analysis of components in different food samples.
- b. Paper chromatography of natural extracts.
- c. Determination of pH of different natural solutions.
- d. Determination of λ max of different solutions/ any extract.
- e. Any other.

References:

- Biochemistry (2006), U. Satyanarayan, Allied Publishers
 Textbook of Biochemistry, 3rd Ed.(1961), E.S. West and W. Todd, Mcmillan, NY
- 3. Harper's Physiological Chemistry 22^{nd} Ed.(2),
- 4. Biochemistry, A.C. Deb, Books and Allied Publ.
- 5. Outlines of Biochemistry 5th Ed., E.E. Conn, P.K. Stumpf, Wiley Publishers

1st Semester Syllabus for Core Courses in Life Science. St. Xavier's College –Autonomous, Mumbai.

LIFE SCIENCE

F.Y.B.Sc. :

Course Code: S.LSC.1.01

Title: Genetics and Evolution

Learning Objectives:

On successful completion of this module it is expected that students will be able to:

- 1. Articulate Mendel's "laws" and explain the evidence for it
- 2. Define, differentiate, and utilize terminology associated with Mendelian genetics.
- 3. Utilize Punnett square, forked line, and probabilistic methods of calculating expected ratios of offspring.
- 4. Construct and analyze pedigrees to determine patterns of inheritance, genotypes, and probabilities.
- 5. Understand that not all genetic traits are inherited in Mendelian fashion.
- 6. Explain how life might have originated on this planet
- 7. Describe Darwin's theories and how the principles of natural selection can lead to speciation.

Number of lectures: 45

UNIT I

(15 Lectures) 1. Gene as a unit of heredity: Organisation of genes on chromosomes:

- a. Structure of a Prokaryotic genome: eg; E.coli
- b. Structure of a Eucaryotic genome: packaging of DNA to chromosome
- c. Evidence of DNA as genetic material: Griffith's experiment, Avery & Mcleod's experiment

2. Mendelian Inheritance:

- a. Concept of alleles, dominance & recessivity, homozygous, heterozygous, phenotype, genotype
- b. Mendel's laws: Law of segregation of alleles, Law of Independent Assortment
- c. Monohybrid, dihybrid and trihybrid ratios: test cross and self cross, Punnet square and branch diagram for determining ratios of genotypes and phenotypes, chi square analysis for mono-hybrid and di-hybrid ratios
- 3. Concept of cytoplasmic inheritance

UNIT II

(15 Lectures)

(6)

(8)

(1)

(1)

- 1. Extensions of Mendel's laws: Incomplete dominance; co-dominance (10)multiple genes; Multiple alleles; Lethal alleles; Gene interactions: Epistasis- dominant and recessive; Penetrance and expressivity; Extrinsic factors- temperature, nutrition; Intrinsic factors- Sex (sex limited; sex influenced), age; Pleiotropy
- 2. Study of human pedigrees: Modes of inheritance: sex-linked dominant & recessive autosomal dominant & recessive (4)
- 3. Concept of Karyotype: The Human Karyotype

Unit III

(15 Lectures)

- 1 .Origin of life
 - a. Theories of origin of life: Overview of Creation myths/ Divine creation; Spontaneous generation; Cosmozoic hypothesis; Steady state; Biochemical origin. (2)
 - b. Biochemical theories: Origin of macromolecules; Miller's experiment; RNA world (2)
 - c. Origin of cells: Protocells; Coacervates; Microspheres; Prokaryotes, Eukaryotes (3)

- 2. Evolution
 - a. Pre Darwanian ideas; Darwin's theory of natural selection, evidences and objections (2)
 - b. Evidences for evolution
 - c. Speciation: Concept of species: Physiological species, Biological species, (2) evolutionary species; Significance of speciation
 - d. Speciation and macroevolution: Allopatric, sympatric, and parapatric; (2)

Course S.LSC.1.02 - Practicals

- $1. \chi 2$ test on actual data eg. Blood groups, widow's peak, tongue rolling, color preferences
- 2. Study of various Drosophila Mutants
- 3. Study of Sickle cell anemia Slides/Photos
- 4. Study of human Karyotype
- 5. Pedigree Analysis
- 6. DNA Extraction + DPA test
- 7. Preparation of media for drosophila and study of its life cycle

8. .Literature search on PUBMED for a genetic disorder: write out 10 references and abstracts on a topic

References:

- 1. "Genetics A conceptual approach"- Benjamin Pierce 3rd Edition (2008)
- 2. "Genetics- A molecular approach" Peter Russell 2nd edition, Pearson International(2006)
- 3. "Principles of Genetics"- Snustad and Simmons, 3rd edition (2003)
- 4. "Genes VI"- Benjamin Lewin (1997).
- 5. "Cell Biology, molecular biology, evolution and genetics" Varma and Aggarwal
- 6. "Concepts of Genetics"- W.S. Klug, M.R. Cummings, C.A.Spencer. 8th edition, Pearson Education International (2006)
- "Introduction to Genetic Analysis"- A.J. Griffiths, S. R. Wessler, R.C. Lewontin, S.B. Caroll. 9th edition, Freeman and Company (2008)
- "Molecular Biology of the gene"- J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M.Levine. 5th edition, Pearson Education (2004)
- 9. "Genetics": The Continuity of Life"- D.J. Fairbanks, W.R. Andersen, Brooks/Cole Publishers (1999)
- 10. "Strickbergers evolution: the integration of genes, organisms and population, Brian K. Hall, B. Halleirmsson, 4th edition, Jones and Barlett Publishers. (2008)
- 11. "The World of Biology", Solomon E.P., L.R. Berg, 8th edition, Sanders College publishing(2008)
- 12. Essential Biology, N. A. Campbell, J.B. Reece, L.A.Umy, M.A. Cain et al, 8th ed, Pearson Benjamin Cummings (2008).

(2)

Template of Theory Question paper Courses S.LSC.1.01 & 1.02

CIA I – 20 marks, 45 mins.

Unit I: Objectives/Short questions, not more than 5 marks each

CIA II – 20 marks, 45 mins.

Unit II: Short questions/Presentation/Assignment, not more than 5 marks each

End Semester exam – 60 marks, 2 hours

There are three units and three questions, one per unit. The Choice is internal- i.e. within a unit and could be between 50% to 100%

FYBSc LifeScience - 1.01 and 1.02 Exam Grid								
Course	Exam	Knowledge and Information	Understanding	Application/Analysis	Total			
	CIA I	8	8	4	20			
1.01	CIA II	8	8	4	20			
	End sem	18	18	24	60			
Course	Exam	Knowledge and Information	Understanding	Application/Analysis	Total			
	CIA I	10	7	3	20			
1.02	CIA I	10	7	3	20			
	End sem	30	20	10	60			