

St. Xavier's College – Autonomous Mumbai

Syllabus
For 3rd Semester Courses in PHYSICS
(June 2018 onwards)

Contents:

Theory Syllabus for Courses:

S.PHY0301 – Wave and Quantum Optics

S.PHY0302 - Mathematical Physics

S.PHY0303 - Electronics

Practical Course Syllabus for: SPHY03PR

Course: SPHY0301

Title: Waves and Quantum Optics

Learning Objectives: To understand the interaction of light with matter.

Number of Lectures: 45

Unit 1

Interference and Diffraction

(15 lectures)

Michelson Interferometer: circular fringes, localized fringes, white light fringes.

The Fabry-Perot Interferometer, Febry-Perot Spectroscopy.

Fresnel Diffraction: Introduction, Fresnel's half period zones, diffraction by a circular aperture and obstacle, zone plate, apertures and obstacles with straight edges, vibration curve for strip division: Cornu's Spiral, diffraction by a single slit and narrow obstacle.

Unit 2

Polarization (15 lectures)

The nature of polarized light: linear, circular, elliptical polarization, Polarizers, Dichroism, Birefringence: crystals and polarizers, Scattering and Polarization, Polarization by reflection, Retarders: Wave plates and Rhombs, Half wave plate, Quarter wave plate, compensator and variable retarders. Circular Polarizers, Polarization of Polychromatic light, Optical activity, Induced optical effects: photoelasticity, The Faraday effect, Kerr and Pockets Effects. Liquid crystals.

Unit 3

Quantum Optics (15 lectures)

Basics of coherence theory: introduction, visibility, Coherence length, temporal and spatial coherence.

Lasers: introduction, Stimulated Emission: population of energy levels, The Einstein A and B coefficients, Metastable states, pumping, optical resonator cavities, Guassian laser beams, Ruby Laser, He-Ne Laser, semiconductor laser, speckle effect, applications of LASERS. Holography: Basic principles of Holography, viewing a Hologram, Developments and applications, Holographic Interferometry.

REFERENCE BOOKS:

- 1. Optics -by Eugene Hecht, 4th ed., Pearson Education Asia, 2002.
- 2. Optics -by Ajoy Ghatak, McGraw-Hill Education, 2009.
- 3. Fundamentals of Optics –by Jenkins and White, 4th ed., McGraw Hill Education, 2001
- 4. LASERS- by Ajoy Ghatak and Thyagarajan, Springer, 2010

Course: SPHY0302

Title: Mathematical Physics

Learning Objectives: To understand the mathematical concepts related to physics

Number of lectures: 45

Unit 1 (15 lectures)

Conics 10+2 level (parabola, hyperbola, ellipse)

Vector analysis

Coordinate systems (orthogonal curvilinear)

Unit 2 (15 lectures)

Matrices and applications

Probability theory and applications.

Differential equations-1

Unit 3 (15 lectures)

Differential equations-2

Fourier series

Fourier and Laplace Transforms

References:-

- 1. Thomas, George B. Jr.; Weir, Maurice D. & Hass, Joel: Calculus. (12th ed.) Chennai. Pearson India Education Services Pvt. Ltd, 2016. 978-93-325-4242-6--(515Tho)
- 2. Dass, H.K. & Verma, Rama: Mathematical physics. (6th ed. reprint) New Delhi. S. Chand & Company Ltd., 2011(2012). 81-219-1469-8--(530.15Das)
- 3. Gupta, B.D.: Mathematical physics. (4th ed.) New Delhi. Vikas Publishing House Pvt. Ltd., 2010(2011). 978-81-259-3096-9--(530.15Gup)
- 4. Arfken, George B. & Weber, Hans J.: Mathematical methods for physicists. (4th ed. Indian reprint) Bangalore. Prism Books Pvt. Ltd., 1995. 81-7286-036-6--(530.15ARF/WEB)
- 5. Riley, K.F.; Hobson, M.P. & Bence, S.J.: Mathematical methods for physics and engineering. (3rd ed.) Cambridge. Cambridge University press, 2010. 978-0-521-13987-8--(515.1Ril)

C.I.A.: Problem Solving / Multiple Choice Questions /Assignments/Presentations

Course: SPHY0303

Title: Electronics

Learning Objectives: Understanding working of basic electronic gadgets.

Number of Lectures: 45

UNIT I P-N junctions, BJT

(15 Lectures)

Review of Semiconductor Diodes, Diode Applications (Revision), Passive filters Bipolar Junction Transistor, DC Biasing of BJTs, BJT Frequency Analysis Self study:

Common base configuration, Current-mirrors, current source circuits, practical Applications

Unit II OPAMPs and Thyristors

(15 Lectures)

Differential amplifiers, Operational amplifiers

Op Amp applications

SCR & Applications of SCR

Self Study:

Light activated SCR, Photo-transistors, Opto-isolators

Unit III Digital Electronics

(15 lectures)

Digital logic (Revision),

Combinational logic circuits Number Systems and Codes

Arithmetic circuits

Flip flops: RS FF, Clocked RS FF, JK FF, M/S JK FF, T- FF, Clear & Preset functions

Counters: Ripple counter upto 4 bit, Up-Down counter, modified counters

Self Study: digital clock, digital frequency meter

REFERENCE BOOKS:

Main References:-

- Boylestad, Robert L. & Nashelsky, Louis: Electronic devices and circuit theory. (11th ed.) Noida. Pearson India Education Services Pvt. Ltd, 2016. 978-93-325-4260-0--(621.3815Boy/Nas)
- 2. Leach, Donald P.; Malvino, Albert Paul & Saha, Goutam: Digital principles and applications. (8th ed.) New Delhi. McGraw Hill Education (India) Private Ltd, 2015. 978-93-392-0340-5--(621.381Mal/Lea)
- 3. Malvino, Albert Paul & Bates, David J.: Electronic principles. (7th ed.) New Delhi. Tata McGraw Hill Education Private Limited, 2007(2010). 0-07-063424-4--(621.381Mal/Bat)
- 4. Mottershead, Allen: Electronic devices and circuits: An introduction. (Indian reprint) New Delhi. Prentice-Hall Of India Private Limited, 1973. 0-87692-124-1--(621.3815MOT)

C.I.A.:

Problem Solving / Multiple Choice Questions / Assignments / / Seminar Presentations / Field trips

COURSE: SPHY03PR

REGULAR EXPERIEMENTS + PROJECT WORK (IN THEORY RELATED TOPICS)

Experimental Project work: 30×3 marks
Presentation: 20 marks
Exam on regular experiments
Journal 15 marks

Minimum Three experiments from each paper

Wave and Quantum Optics:

- 1 Schuster Method
- 2. Cauchy's constant.
- 3. Cylindrical obstacle.
- 4. R. P. of telescope.
- 5. Fresnel diffraction of straight edge or circular aperture
- 6. Diffraction grating –wavelength of Hg lines

Mathematical Physics:

- 1. Numerical analysis of Mathematical methods(e.g. Differential equation, matrices, Fourier analysis, different random walks) using softwares like Octave, MS Excel.
- 2. Finding solutions of different physical systems (Coupled harmonic motion, LCR Circuits
 - etc.) using numerical analysis (using above mentioned softwares)
- 3. Demonstration of Fourier series using OPAMP circuits.

Electronics:

- 1. Bridge rectifier, Zener Diode.
- 2. Study of Clipper and clamper circuits
- 3. Transistor o/p characteristics, different biasing, load line and stability.
- 4. CE amplifier, frequency response, input and output impedance
- 5. Logic gates + half adder, Full adder
- 6. Sum of product and product of sum method.
- 7. Opamp- inverting, non inverting ammplifiers and voltage folloer

REFERENCES:

- 1. Advanced Practical Physics Worsnop & Flint .
- 2. Advanced course in Practical Physics D. Chattopadhye, P.C. Rakshit & B, Saha.
- 3. B.Sc. Practical Physics -C.L. Arora