

St. Xavier's College (Autonomous) Mumbai

Syllabus For 5th Semester Courses in BIOCHEMISTRY

(June 2018 onwards)

Contents:

Syllabus (theory and practicals) for Courses:

SBCH0501 Molecules of Biological Significance

SBCH0502 Nutrition and Metabolism

SBCH05PR Practicals

Template for theory and practical question paper Evaluation and Assessment Grid

Percent revision:

2015-16: No revision 2016-17: No revision

2017-18: 25% (0501) and 21.66% (0502) 2018-19: 40-50% revision to practicals

2019-20: No revision 2020-21: No revision

BIOCHEMISTRY

T.Y.B.Sc. Course No.: SBCH0501

Title: Molecules of Biological Significance

Learning Objectives:

The objectives of the course are to:

- 1. Increase student awareness of the role of primary compounds in the maintenance of cellular structure and function in plants and animals.
- 2. Introduce the students to the medical and non-medical applications of secondary metabolites
- 3. Consolidate the understanding of protein structure, folding and the role of enzymes and coenzymes in carrying out essential biochemical reactions.

No. of lectures: 60

UNIT I: Primary compounds and Secondary metabolites (15 lectures)

1. Carbohydrates:

(6)

- a. Starch, Cellulose, Chitin, Pectin
- b. Proteoglycans: Hyaluronic acid, Chondroitin sulphate, Heparin, NANA
- c. Glycoproteins and Glycolipids in animal cell membrane
- d. Gangliosides Blood group antigens

2. Lipids: **(2)**

- a. Cholesterol (biochemical role. role in cell membrane, a disorders, obesity-diabetes link)
- b. Lipopolysaccharides in Gram negative cells
- 3. **Nucleic acids**: (Guided self-study) **(1)** Structure of nucleotides and polynucleotides
- a. Nucleic Acid forms A, B, Z
- b. RNA- mRNA, rRNA, tRNA, snRNA, micro RNA, hnRNA
- 4. Secondary Metabolites in Plants

- a. Alkaloids-true, proto, pseudo; Phenolics- simple phenyl propanoids, Coumarins, Benzoic acid derivatives, Flavinoids, Stilbenes, Lignin
- b. Terpenoids.

(For all - Classes, Chemistry/source, Medical /non medical applications with an example)

UNIT II: Vitamins and Micronutrients

(15 lectures)

- 1. Vitamins: **(3)**
- a. Water soluble Thiamine. Riboflavin. Niacin. Pyridoxine, Biotin. Lipoic acid, Folic acid, Vitamin C
- (Chemistry- Group involved in its activity, Biochemical role, Disorders)
- b. Fat soluble vitamins (A,D,E,K) **(6)**

Chemistry, Wald's Vitamin A: visual cycle, Role in vision, deficiency disorders (Night blindness, Keratomalacia)

Vitamin D: Chemistry, Role in calcium absorption and mobilization, Deficiency disorders (Rickets, Osteomalacia)

Vitamin E, Vitamin K: Chemistry, Physiological role

(E: antioxidant, K: Blood clotting)

2. Mine	rals:					(6)
Ca,	Mg,	Na,	K,	Fe,	Zn,	Se
(Absorpti	ion, Distributio	on, Metabolism,	, Physiologica	al role, Disorde	ers)	
UNIT III: A	mino acids an	d Proteins			(15 le	ectures)
		tion of Amino	acids			,
(1)						
2. Protein St	ructure:					
a. Primary St	ructure of Pro	teins - peptide b	ond, phi & p	si angles, deter	mination of am	ino
•		ger's reagent, E		•		
-		nents; Numerica	_		, .	(5)
_		oha helix and B			dran plot	(2)
-	-	ture: Structural	-		-	
-	otein interactio		·			(2)
d. Tertiary str	ructure - eg. M	lyoglobin; Conc	cept of a Dom	ain		(1)
e. Quaternary	structure - eg	. Hemoglobin;	Concept of s	ubunits		(2)
3. Protein De	enaturation and	Renaturation –	- Ribonucleas	e		(1)
4. Functional	classification	of Protein				(1)
UNIT IV: E	nzvmos				(15)	ectures)
	•	me, Apoenzyn	a. Isozyma	(Hevokinase	`	,
-	•	cific activity; C	,	,		
2. Enzyme c	• •	cific activity, C	onstitutive at	id iliduced cliz	ymes, Ribozyn	(2)
•		nergy, Reactio	n rate Enzy	me – substrate	interaction	(3)
	*	ey); Units of Er	,			` '
		: Derivation of 1	•			<u>-</u>
		nd Lineweaver		men equation	single substru	(2)
	-	Reversible (C	-	Noncompetiti	ve egs Dico	` '
-		(Iodoacetamid	-	roncompens	.,, 6	(2)
	,	Allosteric enzyn	*	ADP as modul	ators of PFK-1	, ,
Regulation					dephosphorylat	
0	phosphorylase		(-	. J	1 1 1 1 1 1 1 1	(2)
		above concepts	8			(1)

References

- 1. Basic Concepts in Biochemistry: A Student's Survival Guide. 2nd Ed. Hiram F. Gilbert. McGraw-Hill.
- 2. Biochemistry. 7th Ed. JM Berg, JI Tymoczko, L Stryer, GJ Gatto, Jr. WH Freeman and Company, New York.
- 3. Lehninger Principles of Biochemistry. 7th Ed. DL Nelson, M Cox. Macmillan International Higher Education.
- 4. Biochemistry. 4th Ed. D. Voet and JG Voet. Wiley.
- 5. Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins. 3rd Ed. N Price and L Stevenson. Oxford University Press.
- 6. Enzymes. 2nd Ed. M Dixon and EC Webb. Academic Press.
- 7. Textbook of Biochemistry with Clinical Correlations. 7th Ed. TM Devlin. Wiley.
- 8. A Textbook of Physiological Chemistry for Students of Medicine. 17th Ed. HA Harper.
- 9. Plant Biochemistry (2008) C. Bowsher, M. Steer, A. Tobin, Garland Science, Taylor and Francis group.
- 10. Pharmacognosy: Phytochemistry Medicinal Plants. 2nd Ed. J. Bruneton, Lavoisier Publishing.
- 11. Plant Biochemistry. 3rd Ed. H-W Heldt, Elsevier Academic Press.

BIOCHEMISTRY

Course No.: SBCH0502 T.Y.B.Sc.

Title: Nutrition and Metabolism

Learning Objectives:

The learning objectives of the course are to understand:

- 1. Metabolism of carbohydrates and lipids and their significance in living systems.
- 2. The link between nutrition, metabolism and energy.

	Nutritive aspects of food.				
No.	of lectures: 60				
UN	IT I: Nutrition (15 lectures)				
1.	Introduction to Nutrition, Factors affecting, National and International organizations,				
	Dietary guidelines for Indians (NIN) (1)				
2.	Overview of digestion, absorption, and excretion (1)				
3.	Nutritive value of food (2)				
	Balanced diet; Food pyramid, Eat Well plate (Self study)				
	Carbohydrates and Dietary fibres (beneficial and adverse effects of dietary fiber)				
	Proteins (Essential and non-essential amino acids, complete and incomplete proteins;				
	Nitrogen balance, Measurement of protein quality –Biological Value, Protein Efficiency				
	Ratio, Net Protein Utilization, Protein Digestibility Corrected Amino Acid Score)				
	Fats (saturated fats, MUFA and PUFA, ω -3 and ω -6 fatty acids, trans-fats)				
	Food quality - processing and storage (2)				
	Water and electrolyte balance				
4.	Nutrition in Weight Management, Nutrition for Exercise and Sports (1)				
5.	Nutrition in Disease Management: (4)				
	Nutritional disorders: Type II diabetes mellitus, Obesity, Cardiovascular Disease,				
	Kwashiorker, Marasmus, Malnutrition,				
	Eating disorders: Anorexia nervosa, Bulimia nervosa, Binge eating disorder, Fad diets				
6.	Energy content of food: Measurement of energy content (Guided self study)				
	in vitro(Bomb calorimeter), in vivo (indirect calorimetry); RQ of food				
	Energy expenditure: BMR, Physical activity, Thermic effect of food (2)				
	Numericals based on the above concepts				
7.	Body composition (2)				
	Body fat percentage, Essential body fat, body fat distribution and body type, influencing				
	factors Measurement of body composition (Direct: Skin fold measurement, BIA, etc.,				
	Indirect indicators: Body Mass Index, Waist Hip Ratio)				

UNIT II: Carbohydrate metabolism

(15 lectures)

- 1. Glycolysis, Gluconeogenesis, Glycogenesis, Glycogenolysis, Cori cycle, HMP (10)
- 2. Oxidation of Pyruvate, TCA cycle, Amphibolic nature of TCA, Anaplerotic reactions **(5)**

UN.	IT III: Bioenergetics and Photosynthesis (15)	lectures)
	1. Malate - Aspartate and Glycerol phosphate shuttles	(2)
	2. Mitochondrial Electron Transport Chain: Electron carriers- Chemistry, S	equence,
	Experiments that proved the sequence; Q cycle; Inhibitors of electron	transport
	(Rotenone, Amytal, Piericidin A, Antimycin, CN, H2S, CO, Azide	(4)
	3. Oxidative phosphorylation (OP): Mitchell's hypothesis and proton motiv	ve force,
	ATP synthase, Boyer's binding change mechanism for ATP synthesis, Inhi	bitor of
	OP – Dinitrophenol	(3)
	4. Energetics of Glucose /Fructose / Maltose oxidation	(2)
	5. Photosynthesis: Photophosphorylation - Linear and Cyclic; Calvin Cycle	(4)
UN	TT IV: Lipid metabolism (15)	lectures)
1.	Lipolysis, Knoops experiment, β-oxidation of saturated fatty acids(even carbon)	(5)
2.	Energetics of β-oxidation of saturated fatty acids (C4 to C20)	(2)
3.	Formation and utilization of Ketone bodies, ketone bodies in starvation,	diabetes
	mellitus, pregnancy and alcoholism	(3)
4.	Lipogenesis, Citrate transport, Synthesis of Palmitic acid	(3)
5.	Lipoprotein (formation and fate)	(2)

References

- 1. Basic Concepts in Biochemistry: A Student's Survival Guide. 2nd Ed. Hiram F. Gilbert. McGraw-Hill.
- 2. Biochemistry. 7th Ed. JM Berg, JI Tymoczko, L Stryer, GJ Gatto, Jr. WH Freeman and Company, New York.
- 3. Lehninger Principles of Biochemistry. 7th Ed. DL Nelson, M Cox. Macmillan International Higher Education.
- 4. Biochemistry. 4th Ed. D. Voet and JG Voet. Wiley.
- 5. Krause's Food &Nutrition Therapy. 12th Ed. LK Mahan & S Escott-Stump. Saunders, USA.
- 6. Nutrition. 6th Ed. P Insel, D Ross, K McMahon, M Bernstein. Jones & Bartlett.
- 7. Human Nutrition & Dietetics. 10th Ed. JS Garrow, WPT James &A Ralph. Churchill Livingstone Press, London.
- 8. Nutritive value of Indian foods. 1990. CGopalan. National Institute of Nutrition, India.
- 9. Dietary Guidelines for Indians. 2011. National Institute of Nutrition, India.
- 10. Textbook of Biochemistry with Clinical Correlations. 7th Ed. TM Devlin. Wiley.

Practical: SBCH05PR

- 1. Preparation of solutions: Normal and molar solutions, solutions prepared as mg% or %
- 2. Carbohydrates
 - a. Qualitative identification of Starch, Dextrin, Sucrose, Lactose, Maltose, Fructose, Glucose
 - b. Extraction and isolation of starch from potato/ sweet potato/ maize
 - c. Estimation of lactose by Cole's ferricyanide method
 - d. Estimation of reducing sugar by DNSA / Folin Wu method
 - e. Demonstration experiment: GOD-POD assay (kit-based)
- 3. Proteins
 - a. Qualitative identification of Casein, Gelatin, Albumin, Peptone
 - b. Isolation of casein from milk
 - c. Estimation of proteins colorimetrically by Folin-Lowry method
- 4. Lipids
 - a. Determination of acid value of oil (fresh and rancid)
- 5. Vitamins
 - a. Estimation of Vitamin C by DCPIP/ Iodometry
- 6. Minerals
 - a. Estimation of Phosphorus
 - b. Estimation of Iron
 - c. Estimation of Calcium
- 7. Glycine titration curve

Template of Theory Question paper

SBCH0501 and SBCH0502

$\underline{CIAI} - 20$ marks, 45 mins.

Objective/Short questions, not more than 3 marks each

CIA II - 20 marks

Test (45 mins.)/ Survey/ Assignment/ Presentation/ Poster/ Essay/ Review

End Semester exam – 60 marks, 2 hours

Question 1: Unit I: maximum marks per sub-question - 12 marks

15 marks to be answered out of 22-30 marks

Question 2: Unit II: maximum marks per sub-question - 12 marks

15 marks to be answered out of 22-30 marks

Question 3: Unit III: maximum marks per sub-question - 12 marks

15 marks to be answered out of 22-30 marks

Question 4: Unit III: maximum marks per sub-question - 12 marks

15 marks to be answered out of 22-30 marks

CIA & End Semester Practical Examination

Template of Practical Question paper

Course: SBCH05PR

CIA & End Schiester Fractical Examination	Iotai iliai ks. 100
CIA: (0501 & 0502)	Total marks: 40
Q1. One/ Two experiments	20 marks
Q2. Spots/ Viva	10 marks
Q3. Journal	10 marks
End Semester Practical Examination: (0501 & 0502)	Total marks: 60
Q1. Two - four experiments	50 marks
Q2. Viva/Quiz	10 marks

Total marks: 100

DEPARTMENT OF LIFE SCIENCES AND BIOCHEMISTRY

T.Y.B.Sc. Biochemistry Exam Grid Semester 5							
Course	Exam	Knowledge	Understanding	Application/Analysis	Total		
	CIA I	8	8	4	20		
0501	CIA II	8	8	4	20		
	End semester	20	20	20	60		
Course	Exam	Knowledge	Understanding	Application/Analysis	Total		
	CIA I	8	8	4	20		
0502	CIA II	8	8	4	20		
	End semester	20	20	20	60		
	-						