6th Semester Syllabus for Core courses Biochemistry – T.Y.B.Sc. St. Xavier's College –Autonomous, Mumbai. Revised March 2018

St. Xavier's College – Autonomous Mumbai

Syllabus For 6th Semester Courses in BIOCHEMISTRY

(June 2018 onwards)

Contents:

Syllabus (theory and practicals) for Courses:

SBCH0601 SBCH0602 SBCH06PR Biomolecules and Bio-analytical Chemistry Metabolism, Clinical Biochemistry and Pharmacology Practicals

Template for theory and practical question paper Evaluation and Assessment Grid

Percent revision: 2015-16: No revision 2016-17: No revision 2017-18: 21.66% (0601) and 11.66% (0602) 2018-19: 40-50% revision to practicals 2019-20: No revision BIOCHEMISTRY

T.Y.B.Sc.

Title: Biophysical and Bio-analytical Chemistry

Learning Objectives:

On completion of the course, the student must be able to understand:

1. Concepts of pH and buffers, appreciate their importance in biology and solve numerical problems.

2. Principle, concept and applications of centrifugation, chromatography and electrophoresis.

Number of lectures: 60

UNIT I:

- 1. pH and Buffers a. Concept of pH, Ionic product of water; pKa and pKb
- b. Derivation of Hendersen-Hasselbalch equation; relation between Kw, Ka & Kb.
- c. Buffers, Buffer capacity, Physiological buffers (bicarbonate, phosphate, protein, Hb)
- d. Respiratory and metabolic acidosis and alkalosis; Lungs in pH regulation, Kidneys in pH regulation (buffering by bicarbonates and ammonia; renal correction of acidosisand alkalosis)
- e. Ionization of Glycine, Aspartic acid and Lysine; Titration curve of these amino acids,
- f. Derivation of an equation for pI
- g. Determination of pH: using Indicators, Colorimetric determination, Potentiometric determination (Electrode potential, half cell, silver/silver chloride electrode, calomel electrode, glass electrode, combination electrode, pH meter)
- h. Numericals on the above concepts.

2. Protein Purification

- a. Cell lysis techniques purpose, methods, choice (Mechanical – Bead mill/Sonication/ French press;
- b. Physical Thermolysis (Freeze-thaw), Osmotic shock;
- c. Chemical–Alkaline lysis/ Detergents/ Organic solvents;
- d. Enzymatic Lysozyme/ Cellulase/ Chitinase)
- e. Post- cell lysis: Separation and purification techniques (overview only list/ flowchart)
- f. Ammonium sulphate fractionation (salting in, salting out, A.S Fractionation nomogram, problems), Protein crystalization, molecular filtration.

UNIT II: Biophysical Chemistry & Centrifugation

1. Biophysical Chemistry a. Phases, Systems and Components; Gas Laws (Boyle's, Guy Lussac's, Avagadro's laws and their biological significance [Guided Self study]

(1)b. Definition, influencing factors, biological significance and applications of: Diffusion, Osmosis, Brownian motion, Viscosity, Surface tension, Adsorption (6)

(15 lectures)

(8)

(15 lectures)

(4)

(11)

6th Semester Syllabus for Core courses Biochemistry – T.Y.B.Sc. St. Xavier's College –Autonomous, Mumbai. Revised March 2018

c. Dipoles and dielectric constant	(1)
2 Centrifugation	(7)
a Centrifugal force and Relative centrifugal force: Nomogram:	(1)
Types of centrifuges (Clinical, High speed, Ultracentrifuge) and rotors (Swing o	ut.
Angle)	,
b. Types and applications of centrifugation: Preparative and Analytical;	(3)
Differential and Density gradient (Rate zonal, Isopycnic)	
[to be covered with respect to subcellular fractionation]	
c. Sedimentation: Velocity, Equilibrium, Rate, Coefficient (Svedberg unit)	(1)
d. Numericals on the above concepts	(1)
UNIT III: Chromatography (15 le	ctures)
1 Principle Working and Applications of	(13)
a. Partition: Paper and Gas chromatography	(10)
b. Adsorption: Thin layer and Column chromatography	
c. Ion Exchange chromatography	
d. Gel Filtration (Size Exclusion) chromatography	
e. Affinity chromatography	
2. Principle and applications of HPLC	(1)
3. Numericals on the above concepts	(1)
UNIT IV: Electrophoresis and Spectroscopy (15 le	ctures)
1 Electrophoresis	(8)
a. Principle and set up	(0)
b. Factors affecting the rate of migration of a particle in an electric field	
c. Supporting media: Paper, Cellulose acetate, Agar, Agarose and Polyacrylamide	
d. Types of electrophoresis: Zone and Moving boundary; High and low voltage;	
Vertical (slab) and Horizontal	
e. PAGE: Native -discontinuous, Role of SDS; Applications	
2. Spectroscopy	(7)
light/radiation intensity. UV/Visible spectroscopy and Complementary colour	
b. Beer's and Lambert's laws, derivation and limitations of the Beer-Lambert law.	
Application of the law in the estimation of proteins and sugars	
c. Concept of Lambda max, Molar extinction coefficient	
d. Construction and working of a simple single beam colorimeter and spectrophoto	meter
e. Principle and applications of NMR and Mass spectrophotometry	

f. Numericals on the above concepts

References:

- 1. Analytical Chemistry. 7th Ed. GD Christian, PK Dasgupta, KA Schug. Wiley.
- Fundamentals of Analytical Chemistry. 9th Ed. DA Skoog, DM West, FJ Holler, SR Crouch. Cengage Learning.
- 3. Tools of Biochemistry -T. Cooper
- Principles and Techniques of Biochemistry and Molecular Biology. 7th Ed. K Wilson, J Walker. Cambridge University Press.
- 5. Biophysics and Biophysical Chemistry. 6th Ed. D Das. Academic Publishers.
- 6. Essentials of Biophysics. 2nd Ed. P. Narayanan. Anshan Publishers.
- Biochemistry. 7th Ed. JM Berg, JI Tymoczko, L Stryer, GJ Gatto, Jr. WH Freeman and Company, New York.
- 8. Lehninger Principles of Biochemistry. 7th Ed. DL Nelson, M Cox. Macmillan International Higher Education.
- 9. Biochemistry. 4th Ed. D. Voet and JG Voet. Wiley.
- 10. Biochemistry. 4th Ed. C K Mathews, KE van Holde, Ahern.
- 11. Biochemistry. 4th Ed. G Zubay. Brown (William C) Co., USA.
- Biochemistry. 3rd Ed. U Satyanarayan, U Chakrapani. Books and Allied (P) Ltd., Kolkata, India.

BIOCHEMISTRY

T.Y.B.Sc.

Course No.: SBCH0602

Title: Metabolism, Clinical Biochemistry and Pharmacology

Learning Objectives:

On completion of the course, the student must be able to understand:

- 1. Basic tenets of nucleic acid and protein metabolism, turnover of amino acids.
- 2. Intricate mechanism of signalling pathways and their dependence on various cues.
- 3. Fundamentals of disorders of metabolism and their impact on health.
- 4. Basic bioinformatics and the applications of computational biology.
- 5. Fundamentals of pharmacology: drug-receptor interactions, ADME.

Number of lectures: 60

UNI	(15 lectures)					
1. Ni	ucleic Acid Metabolism (guided self study)	(1)				
a.	De novo synthesis of purines and pyrimidines					
b.	Purine and pyrimidine recycling by salvage pathway					
2. Pr	rotein Metabolism	(14)				
a.	(1)					
b.	 Protein sorting: signal sequences, protein transport -gated, transmembrane, vesicular (2) protein translocation into mitochondria Protein degradation -lysosome, proteosome - role of ubiquitin (2) 					
c.	Metabolic fates of amino acids (ketogenic and glucogenic)					
d.	 d. Transamination –Mechanism of transamination with Pyridoxal phosphate, SGOT & SGPT; Significance (2) 					
e.	e. Deamination –Oxidative (glutamate dehydrogenase, D-/L-amino acid oxidases)					
	Non oxidative (Asp, Ser, Cys)	(1)				
f.	Decarboxylation (His, 5-OH Trp, Glu, Tyr), Mechanism of decarboxyla	tion with				
_	Pyridoxal phosphate	(2)				
g.	I ransport of Ammonia –Giutamine, Alanine	(1)				
n. ;	Urea cycle Integration of Carbohydrata, Drotain and Linid matchalism	(2)				
1.	integration of Carbonydrate, Protein and Lipid metabolism	(1)				
UNI	T II: Signal Molecules	(15 lectures)				
1	. Hormones	(6)				
	a. Classification (Aminoacid derived, Peptide, Steroid, Eicosanoid)					
	b. Synthesis, transport, secretion and physiological role of Thyroid he insulin	ormones and				
	c. Physiological role of glucocorticoids (Cortisol, Cortisone)					
2. Other signal molecules:						
		1 1'				

Nitric oxide, Growth factors (PDGF, EGF), Neurotransmitters (Acetylcholine, glutamate)

3. Signal Transduction with Cell surface receptor -G protein coupled receptors

 a. cAMP pathway in glycogen metabolism b. cGMP in photoreception c. Hydrolysis of PIP2 4. Signal transduction with Intracellular receptor: Steroid Hormone receptor and mode of action (5) 5. Endocrine regulation of fuel metabolism: Role of Insulin, Glucagon, Glucocorticoids, Epinephrine in regulation of metabolism (4))
JNIT III: Clinical Biochemistry and Bioinformatics(15 lectures))
 Metabolic disorders /dysfunction a. Carbohydrate metabolism: G6PD deficiency; Diabetes mellitus; Arsenic poisoning b. Lipid metabolism: Familial hypercholesterolemia; Atherosclerosis c. Protein and amino acid metabolism: Phenyketonuria; Tyrosinemia, Albinism d. Nucleic acid metabolism: Gout)
 biagnostic enzymology a. Basis of diagnostic enzymology: Basal levels of enzymes in blood; Effect of diseaseon the basal level of circulating enzymes; Factors affecting the usefulness of enzymemeasurements in clinical studies b. Approaches to the study of diagnostic enzymology: i.A selected enzyme e.g. LDH ii.A selected organ e.g. Liver iii.A selected condition e.g. The Myocardial Infarction c. Bioinformatics a. Overview, Purpose, Applications)
 b. Biological data and Databases c. Sequence analysis (Formats, Alignment, Scoring) d. Structural analysis (Molecular visualization softwares) e. Phylogenetic analysis (Cladograms and Phylograms))
Introduction to Phormacology (5	` `
 a. Definition/ concept of –Pharmacology, Pharmacognosy, Pharmacy, Pharmacodynamics, Pharmacokinetics, Therapeutics, Toxicology, Chemotherapy, Pharmaceutical Standard Reference Materials (Materia Medica, Pharmacopoeia, National Formulary, BPI, AMA Drug Evaluations). b. Nature, sources and nomenclature of drugs. 	,
 c. Basic concept of –drug specificity, drug receptor (<i>details of this will be covered elsewhere</i>), Antagonism, Desensitization & Tachyphylaxis, SAR (structure-activity relation) and drug resistance [using only one example each] 	
 2. Pharmacokinetics [ADME] (10) a. Absorption of drug –factors affecting absorption of drug i. Drug administration (Topical, Enemata, Enteral, Parenteral))

ii. Physico-chemical properties of drugs (solubility, diffusion coefficient, ionization)

- b. Distribution of drug Body fluid compartments and concept of volume of distribution
- c. Metabolism of drug
 - i. Concept of first-pass (presystemic) metabolism and BA (bioavailability)
 - ii. Site(s) of drug metabolism and importance of CytP450 microsomal enzymes
 - iii. Phase I reactions (oxidation, reduction, hydrolysis) –ONLY one e.g. each
 - iv. Phase II reactions (conjugation with respect to glucuronyl, methyl and acetyl groups)
- d. Excretion of drug Renal, Biliary and Fecal, other
- 3. Drug-drug and drug-food interactions

References:

- Biochemistry. 7th Ed. JM Berg, JI Tymoczko, L Stryer, GJ Gatto, Jr. WH Freeman and Company, New York.
- Lehninger Principles of Biochemistry. 7th Ed. DL Nelson, M Cox. Macmillan International Higher Education.
- 3. Biochemistry. 4th Ed. D. Voet and JG Voet. Wiley.
- 4. Textbook of Biochemistry with Clinical Correlations. TM Devlin.7th Ed. Wiley.
- Goodman Gillman's Pharacological Basis of Therapeutics. 10th Ed. JG Hardman, LE Limbird (editors), McGraw Hill, New York.
- 6. Basic and Clinical Pharmacology. 9th International Ed. BG Katzung. McGraw Hill.
- Pharmacology and Pharmacotherapeutics. 24th Ed. RS Satoskar, NN Rege, SD Bhandarkar. Elsevier.
- Bioinformatics: Sequence and Genome Analysis DW Mount. 2004 (2nd Ed.), Cold Spring Harbor Laboratory Press, New York.
- 9. Bioinformatics and Functional Genomics J Pevsner. 2015. (3rd Ed.) Wiley.
- 10. Bioinformatics: Methods and Applications Genomics, Proteomics and Drug
Discovery.CardEd.)

SC Rastogi, N Mendiratta, P Rastogi. PHI Learning Pvt. Ltd., New Delhi

Practicals: SBCH06PR

- 1. Chromatography
 - a. Ascending/ descending/ circular paper chromatography of amino acids/ sugars
 - b. Thin layer chromatography (TLC) separation of lipids/ plant pigments
 - c. Column chromatography Adsorption / molecular sieve/ ion exchange
- 2. Enzymology
 - a. Extraction of enzyme.
 - b. Optimum pH
 - c. Kinetics: Km, Vmax (Michaelis-Menten, Lineweaver Burk)
 - d. Fractionation with ammonium sulphate (50% and 100%), Dialysis
 - e. Determination of activity and specific activity
 - f. Effect of activator and inhibitor on Km
 - g. Enzyme immobilization
- 3. Pharmacology
 - a. Estimation of acetyl salicylate
- 4. Electrophoresis
 - a. PAGE: Native/SDS
- 5. Urine analysis (qualitative tests for the following)
 - a. sugars, proteins, bile salts, bile pigments, ketone bodies
- 6. Group research projects

6th Semester Syllabus for Core courses Biochemistry – T.Y.B.Sc. St. Xavier's College –Autonomous, Mumbai. Revised March 2018

Template of Theory Question paper

Courses: SBCH0601 & 602

<u>CIA I</u> – 20 marks, 45 mins.

Objective/Short questions, not more than 3 marks each

CIA II – 20 marks, 45 mins.

Test (45 mins) / Survey/ Assignment/ Presentation/ Poster/ Essay/ Review

End Semester exam – 60 marks, 2 hours Question 1: Unit I: maximum marks per sub-question - 12 marks 15 marks to be answered out of 22-30 marks Question 2: Unit II: maximum marks per sub-question - 12 marks 15 marks to be answered out of 22-30 marks Question 3: Unit III: maximum marks per sub-question - 12 marks 15 marks to be answered out of 22-30 marks Question 4: Unit III: maximum marks per sub-question - 12 marks 15 marks to be answered out of 22-30 marks

Template of Practical Question paper Course: SBCH06PR

CIA & End Semester Practical Examination CIA: (0601 & 0602)	Total marks: 100 Total marks: 40	
Q1. Group Project (Experiment design, planning and execution)	20 marks	
Q2. Group presentation & individual report	20 marks	
End Semester Practical Examination: (0601 & 0602)	Total marks: 60	
Q1. Two - four experiments	40 marks	
Q2. Viva/Quiz	10 marks	
Q3. Journal	10 marks	

DEPARTMENT OF LIFE SCIENCES AND BIOCHEMISTRY

T.Y.B.Sc. Biochemistry Exam Grid Semester 6									
Course	Exam	Knowledge	Understanding	Application/Analysis	Total				
0601	CIA I	8	8	4	20				
	CIA II	8	8	4	20				
	End semester	20	20	20	60				
Course	Exam	Knowledge	Understanding	Application/Analysis	Total				
	CIA I	8	8	4	20				
0602	CIA II	8	8	4	20				
	End semester	20	20	20	60				