

St. Xavier's College (Autonomous) Mumbai

M.Sc. Syllabus For 1st Semester Courses in <u>Microbiology</u> (June 2018 onwards)

Contents: Theory Syllabus for Courses: SMIC0701 - VIROLOGY SMIC0702 - GENETICS SMIC0703 - MICROBIAL BIOCHEMISTRY I SMIC0704 - IMMUNOLOGY

SMIC07PR Practical Syllabus for the following Courses: LABORATORY AND SCIENTIFIC COMMUNICATION SKILLS GENETICS VIROLOGY MICROBIAL BIOCHEMISTRY IMMUNOLOGY

Title: VIROLOGY

Course: SMIC0701

LEARNING OBJECTIVES

- 1. Understand the structure and replication of bacteriophages, plant and animal viruses
- 2. Understand prions as infectious agents
- 3. Understand the methods of study of viruses
- 4. Understand viral evolution and related consequences such as viral emergence

Number of lectures: 60

UNIT 1: INTRODUCTION TO VIROLOGY, TECHNIQUES IN VIROLOGY AND STUDY OF BACTERIOPHAGES 15 LECTURES

LEARNING OBJECTIVES

- 1. Understand the architecture and classification of viruses
- 2. Understand the replication of bacteriophages.
- 3. Understand the techniques used in virology

1. Introduction to Virology

- Virus architecture and nomenclature
- Classification of viruses

2. Techniques in virology

- Measurement of biological activity
- Viral structural proteins
- Analysis of genome
- In situ hybridization, Microarray-based methods

3. Single/double-stranded DNA and RNA phages of *E. coli*

- Structure, gene organization and replication of
 - i. T4 phage
 - ii. T7 phage
 - iii. λ Phage

UNIT 2: STUDY OF PLANT VIRUSES, VIROIDS, AND INSECT VIRUSES 15 LECTURES

LEARNING OBJECTIVES

- 1. Understand the structure and replication of plant viruses and viroids.
- 2. Understand the structure and significance of insect viruses.

1. Impact of plant viruses

- Symptoms of plant viral diseases: macroscopic, histological, cytological
- Economic impact with the help of one recent example
- Strategies of plant virus control

2L

2L

5L

2. Replication strategies of plant viruses	7L
• Strategies to overcome eukaryotic translational constraints	
• Replication strategies of plant viruses with different nucleic acid types with relevant examples	
4. Plant-virus interactions	2L
• Movement of the virus within plants	
RNA silencing	
5. Agents that resemble plant viruses	2L
• Viroids	
• Satellite viruses and satellite RNAs	
6. Baculoviruses (Insect viruses)	2L
• Significance	
• Viral structure	
• Genome	
• Host range	
• Transmission	

UNIT 3: PATHOGENIC ANIMAL RNA VIRUSES AND PRIONS 15 LECTURES

LEARNING OBJECTIVES

1.	Understand the structure and replication of RNA viruses causing significant
	diseases in animals.

2. Understand prions and prion mediated pathogenesis in humans.

 1. Introduction to RNA viruses- Constraints faced by RNA viruses in eukaryotic hosts General strategies used by animal RNA viruses 	4L
2. Double stranded RNA viruses- Reoviruses- e.g. Rotavirus	2L
3. Single-stranded RNA viruses with negative sense –Orthomyxoviruses- e.g. Influenza viruses	2L
4. Single-stranded RNA viruses with positive sense-Picornaviruses- e.g. Polio Virus	2L
5. Single-stranded RNA viruses with reverse transcriptase- Retroviruses- Human	3L

6. Prions

- History
- Proteins involved and "Protein only" Hypothesis
- Diseases
 - i. CJD
 - ii. BSE

UNIT 4: PATHOGENIC ANIMAL DNA VIRUSES, VIRUS EVOLUTION,EMERGING VIRUSES AND ANTIVIRALS15 LECTURES

LEARNING OBJECTIVES

- 1. Understand the structure and replication of DNA viruses causing significant diseases in animals.
- 2. Study virus evolution and the emergence of new and re-emerging animal viruses affecting human health.
- 3. Study antiviral drugs used to treat/prevent viral diseases

1. Double-stranded DNA viruses- Herpes viruses- e.g. HSV, EBV	2L
2. Double-stranded DNA-RT viruses-Hepadna viruses- e.g. Hepatitis B virus	3L
3. Single-stranded DNA virus- Parvoviruses	1L
 4. Viral evolution Host-parasite theory r and k replication strategies. Quasispecies concept Error threshold, lethal mutagenesis, and extinction Genetic bottlenecks Origin of viruses 	4L
 5. New and re-emerging animal viruses Evolution, Emergence, and adaptation Sources and causes of emergent viruses Ecological factors Climate variability Human factors- social behavior Exposure to zoonotic diseases Human movement Example: one recent example of an outbreak of an emerging virus 	2L
 6. Anti viral Drugs Screening for Antiviral Compounds Designer antivirals and computer-based searching Examples of approved drugs and resistance 	3L

- Searching for new targets
- Antiviral Gene Therapy

CIA: Test, Model making

References:-

Unit 1

- 1. Basic Virology, Wagner E, K, Hewlett, M.J, Bloom, D.C., Camerini, D, 3rd ed., 2008, Blackwell Publishing.
- 2. Freifelder's Essentials of Molecular Biology, 4th ed., 2015, Malacinski GM
- 3. Microbial Genetics, Maloy, S.R.; Cronan, J.E.; Freifelder, David; 2nd ed., 1994, Jones and Bartlett Publishers.
- 4. Microbiology Davis, B.D, Dulbecco, R, Eisen, H.N., and Ginsberg, H.S., 4th ed., 1990, Lippincott, Philadelphia
- 5. Molecular Biology, Freifelder, D.; 2nd ed., 1987, Narosa Publishing H.
- 6. The Biology of Viruses, Voyles B. A., 2nd ed., 2002, McGraw-Hill higher education.

Unit 2

1. Comparative Plant Virology, Hull, R., 2nd ed., 2013, Academic Press.

Unit 3

- 1. Basic Virology, Wagner E, K; Hewlett, M.J, Bloom, D.C., Camerini, D, 3rd ed., 2008, Blackwell Publishing.
- 2. Principles of Virology, Flint,S.J.; Enquist, L.M.; Racaniello, V.R; and Skalka, A.M. 3rd ed., 2009, Vol I and II, ASM.
- 3. Understanding Viruses Shors, T., 3rd ed., 2017, Jones and Bartlett Publishers.

- 1. Basic Virology, Wagner E, K, Hewlett, M.J, Bloom, D.C., Camerini, D, 3rd ed., 2008, Blackwell Publishing.
- 2. Principles of Virology Flint, S.J., Enquist, L.M.; Racaniello V.R; and Skalka, A.M. 3rd ed., 2009, Vol I and II, ASM.
- 3. Understanding Viruses Shors, T., 3rd ed., 2017, Jones and Bartlett Publishers.

Title: GENETICS

Course: SMIC0702

LEARNING OBJECTIVES

- 1. Understand concepts involved in recombination, mutations, repair and regulation of gene expression in bacteria and eukaryotes
- 2. Understand concepts of cytoplasmic inheritance and transposable elements in eukaryotes
- 3. Understand viral genetics and study applications based on gene transfer
- 4. Study the genetic basis of cancer

Number of lectures: 60

UNIT 1: GENE EXPRESSION AND ITS REGULATION 15 LECTURES

LEARNING OBJECTIVES

Understand gene expression and its regulation in prokaryotes and eukaryotes

A. GENE EXPRESSION IN EUKARYOTES

1. Transcription

- Transcription process
- Post transcriptional processing- structure of mRNA, pre-mRNA processing, addition of 5'cap, addition of Poly (A) tail, RNA splicing, RNA editing.
- Small RNA molecules- RNA interference, types, processing and function of ٠ microRNAs

2. Translation

- Mechanism of translation, mRNA surveillance.
- Post translational modification of proteins

B. REGULATION OF GENE EXPRESSION

1. Control of gene expression in prokaryotes

- Genes and regulatory element
- Levels of gene regulation
- DNA binding proteins
- Operons
- Antisense RNA molecules
- Riboswitches •

2. Control of gene expression in eukaryotes

- Regulation through modification of gene structure- DNase I hypersensitivity, histone modifications, chromatin remodeling, DNA methylation.
- Regulation through transcriptional activators, Co-activators and repressors, enhancers and insulators
- Regulation through RNA processing and degradation
- Regulation through RNA interference

10L

UNIT 2: RECOMBINATION, MUTATION AND DNA REPAIR

LEARNING OBJECTIVES

- 1. Understand the significance of homologous recombination in bacteria and eukaryotes
- 2. Understand the molecular basis of mutations and DNA repair mechanisms in prokaryotes and eukaryotes

1. Recombination

- Homologous recombination in eukaryotes
- Mating type switching

2. Mutations

• Molecular basis of mutation - Types, mutations induced by chemicals, radiation and transposable genetic elements; expanding trinucleotide repeats and inherited human diseases

3. DNA repair mechanisms

- Excision repair in eukaryotic cells
- Mismatch repair in eukaryotic cells
- Recombination repair in eukaryotic cells
- Conserved repair systems in eukaryotic cells
- Non-homologous end joining (NHEJ) pathway for repairing double-stranded breaks
- Inherited human diseases with defects in DNA repair

UNIT 3: CYTOPLASMIC INHERITANCE and TRANSPOSABLE GENETIC ELEMENTS 15 LECTURES

LEARNING OBJECTIVES

- 1. Understand cytoplasmic inheritance
- 2. Understand the mechanisms of chromosomal rearrangements and its effects on gene expression

1. Cytoplasmic inheritance

- Mitochondrial DNA-Genome structure, replication, transcription and translation, analysis for the study of evolutionary relationships
- Chloroplast DNA -Gene structure and organization, replication, transcription, and translation
- Comparison of nuclear, eukaryotic, eubacterial mitochondrial and chloroplast DNA
- Examples of extranuclear inheritance

8L

15 LECTURES

5L

4L

- i. Poky mutant of Neurospora
- ii. Yeast petite mutant

2. Transposable genetic elements

- Transposable Elements in Eukaryotes
 - i. Ac and Ds Elements in Maize
 - ii.P Elements and Hybrid Dysgenesis in Drosophila
 - iii.Mariner, an ancient and widespread Transposon
- Retrotransposons
 - i. Retrovirus-like elements
 - ii. Retroposons
- The Genetic and Evolutionary Significance of Transposable Elements
 - i. Transposons and Genome Organization
 - ii. Transposons and Mutation
 - iii. Rearrangement of Immunoglobulin Genes
 - iv. Evolutionary Issues Concerning Transposable Elements

UNIT 4: VIRAL GENETICS AND GENETICS OF CANCER 15 LECTURES

LEARNING OBJECTIVES

- 1. Understand the significance of recombination and mapping of the bacteriophage genome
- 2. Study of the application and analysis based on concepts of gene transfer
- 3. Understand the genetic basis of cancer

1. Viral genetics

- Mapping the Bacteriophage genome
 - i. Genetic fine structure mapping
 - ii. Deletion mapping
- Overlapping genes: Bacteriophage $\Phi X174$
- Constructing phage vectors- phage display vectors, suicide vectors, combining phage vectors and transposons

2. Genetic basis of cancer

- Cancer: A Genetic Disease
 - i. Forms of Cancer
 - ii. Cancer and the Cell Cycle
- Oncogenes
 - i. Tumor-inducing retroviruses and viral oncogenes
 - ii. Proto-oncogenes
 - iii. Chromosome rearrangement and cancer
- Tumor Suppressor Genes
 - i. Inherited cancers and Knudson's two-hit hypothesis
 - ii. Cellular roles of tumor suppressor proteins
- Genetic Pathways to Cancer

10L

7L

CIA: Open book test, Test

References: -

Unit 1

- 1. Genetics: A Conceptual Approach, Benjamin Pierce, 6th ed., 2016, W. H. Freeman and Co.
- 2. Molecular Biology, R. F. Weaver, 5th ed., 2011 McGraw-Hill
- 3. Molecular Cell Biology Lodish, H; Berk, A.;Kaiser,C.A. Krieger, M.; Scott, M.; Bretscher, A; Ploegh, H.; and Matsudaira, P; 6th ed., W.H Freeman and Company
- 4. Molecular Cell Biology, 8th ed., 2016, Lodish et al
- Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine, Losick, 5th edition, 2007, Pearson Education
- Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine, 7th ed., 2013, Benjamin-Cummings Pub Co

Unit 2

- 1. Genes IX, Lewin B., 2006, Jones and Bartlett Publishers
- 2. Genes X, Lewin B., 2008, Jones and Bartlett Publishers
- 3. Genes XII, Lewin B., 2018
- Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine, 7th ed., 2013, Benjamin-Cummings Pub Co
- 5. Principles of Genetics, Snustad and Simmons, 6th ed., 2012, John Wiley and Sons Inc

Unit 3

- 1. Fundamental Bacterial Genetics, Turn, Trempy, 1st ed., 2004, Blackwell Publishing
- 2. Genes X, Lewin, B., 2008, Jones and Bartlett Publishers
- Genetics: A Conceptual Approach, Benjamin Pierce 5th ed., 2013, W. H. Freeman and Co
- 4. iGenetics- A Molecular Approach, Russell, P.J., 3rd ed., 2010, Pearson International edition
- 5. Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine, Losick, 5th ed., 2007, Pearson Education

- Concepts of Genetics, Klug, Cummings, Spencer, Palladino 11th ed., 2016, Pearson Education Ltd
- Concepts of Genetics, Klug, Cummings, Spencer, Palladino, Killian 12th ed., 2018, Pearson Education Ltd
- 3. Genetics: A Conceptual Approach, Benjamin Pierce 6th ed., 2017, W. H. Freeman and Co
- 4. iGenetics, A Molecular Approach, Russell, P.J., 3rd ed., 2010, Pearson International Edition

- 5. Molecular Biology, R. F. Weaver, 5th ed., 2011 McGraw-Hill
- Molecular Biology of the Cell, Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts K. and Walter P.; 5th ed., 2008, Garland Science, Taylor and Francis Group
- Molecular Biology of the Cell, Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts K. and Walter P.; 6th ed., 2014, Garland Science, Taylor and Francis Group
- 8. Principles of Genetics, Snustad and Simmons, 6th ed., 2012, John Wiley and Sons Inc
- 9. The Biology of Cancer, Weinberg, R., 2nd ed., 2013, Garland science.

Title: MICROBIAL BIOCHEMISTRY I

LEARNING OBJECTIVES

- 1. Understand the molecular details of bioorganic molecules
- 2. Understand protein structure, folding and structural bioinformatics
- 3. Understand bacterial photosynthesis, nitrogen fixation and extracellular transport
- 4. Understand signalling systems and stress responses in bacteria

Number of lectures: 60

UNIT 1: BIOMOLECULES

LEARNING OBJECTIVES

- 1. Understand the structure and function of carbohydrates and lipids.
- 2. Understand the structural details of nucleic acids and factors involved.

1. Carbohydrates

- Carbohydrates and stability of the glycosidic bond
- Glycoconjugates, proteoglycans, glycoproteins, and glycolipids
- Homopolysaccharide folding
- Functions of oligosaccharides and polysaccharides

2. Lipids

- Lipid classification
- Structure of lipids in membranes- glycerolipids, ether lipids, galactolipids, sulfolipids, lipids in archaebacteria
- Sphingolipids, terpenes, isoprenoids
- Functions of lipids-signals, cofactors, pigments

3. Nucleic Acids

- The factors that determine the structure of DNA- denaturation and melting curve, Hydrogen bonds and hydrophobic interactions, Base stacking, Ionic strength.
- Renaturation Kinetics Cot curve analysis.
- Forms of DNA and circular superhelical DNA.
- Special base sequences and Structural consequences- direct and inverted repeats
- Cruciform, hairpin and stem-loop structures.

UNIT 2: AMINO ACIDS AND PROTEINS

LEARNING OBJECTIVES

- 1. Understand the structures and functions of amino acids and proteins.
- 2. Understand protein folding and misfolding.
- 3. Understand structural bioinformatics.

1. Amino acids and primary structure of Proteins

Course: SMIC0703

15 LECTURES

5L

5L

4L

15 LECTURES

- Classification and stereochemistry
- Derivative and ionization
- Structure of peptide bond and its stability
- Protein sequencing

2. Secondary, Tertiary and Quaternary Structure of Proteins

- Ramachandran plot
- Secondary structures- α helix and other helices, β structures, non-repetitive structures
- Example fibrous protein: Collagen
- Tertiary structure- Globular proteins
- super secondary motifs
- Thermodynamics of folding and protein stability- Electrostatic forces, Van der Waals forces, Hydrogen bonding forces, Disulfide bonds, Protein Denaturation and stability of the thermostable protein.
- Chaperonins and prion motifs and domains
- Quaternary Structure- subunit interactions and symmetry in protein

3. Structural Bioinformatics

- Protein databases- NCBI, Swiss-Prot (ExPasy) PDB, PIR
- Protein Structure visualization- SPDBV, Jmol, Rasmol
- Structural Classification- CATH, SCOP, Pfam, CE and VAST.

UNIT 3: EXPORT SYSTEMS, PHOTOSYNTHESIS AND NITROGEN FIXATION IN BACTERIA 15 LECTURES

LEARNING OBJECTIVES

- 1. Understand cellular export systems
- 2. Understand bacterial photosynthesis.
- 3. Understand biological nitrogen fixation.

1. Cellular export systems		
•	Extracellular protein secretion	
•	Drug export system	
2. Bac	cterial Photosynthesis	5L
•	Phototropic bacterial families	
•	Photosynthetic Apparatus and its Reactions	
٠	Carbon metabolism	
3. Bio	logical Nitrogen Fixation	5L
٠	Nitrogen Fixing organisms	
٠	Biochemistry of nitrogen fixation	
•	Regulation of nitrogenise	

9L

UNIT 4: SIGNAL TRANSDUCTION IN BACTERIA15 LECTURESLEARNING OBJECTIVES15 LECTURES

- 1. Understand signalling systems in bacteria in response to physical and chemical factors
- 2. Understand bacterial development and quorum sensing
- General themes in bacterial signal transduction- (basic principles) one component signalling, two-component signalling, quorum sensing, global control networks
 2L
- 2. Mechanisms of signal transduction
 - Response by facultative anaerobes to
 - i. Anaerobiosis
 - ii. Nitrate and nitrite
 - iii. Nitrogen supply
 - Effect of oxygen and light on the expression of photosynthetic genes in purple photosynthetic bacteria
 - Response to osmotic pressure
 - Chemotaxis
 - Bacterial response to environmental stress
 - i. Heat-shock response
 - ii. Oxidative stress
 - iii. Expression of virulence genes/factors
 - Quorum sensing
 - *Caulobacter* differentiation

CIA: Test, Problem-solving

References: -

Unit 1

- 1. Biochemistry, Voet D. and Voet J.G., 4th ed., 1995, John Willey and Sons Inc.
- 2. Lehninger Principles of Biochemistry, Nelson DL, Cox MM, 6th ed., 2013, Macmillan publishers
- Lehninger Principles of Biochemistry, Nelson DL, Cox MM, 7th ed., 2017, W H Freeman
- 4. Principles of Biochemistry, Zubay, G., 4th ed., 1998, Wm. C. Brown Publishers
- 5. Principles Biochemistry, Mathew, Van Holde and Ahern, 3rd ed., 1999, Pearson Education

Unit 2

- 1. Biochemistry, Voet D. and Voet J.G., 4th ed., 1995, John Willey and Sons Inc.
- 2. Lehninger Principles of Biochemistry, Cox and Nelson, 7th ed., 2017, WH Freeman and company, NY.

Unit 3

1. Bacterial Metabolism, Gottschalk, G., 2nd ed., 1985, Springer-Verlag

- 2. Biochemistry, Voet D. and Voet J.G., 4th ed., 1995, John Willey and Sons Inc.
- 3. Brock Biology of Microorganisms, Michael Madigan, John Martinko, Kelly Bender, Daniel Buckley, David Stahl, 14th ed., 2015, Pearson
- 4. The physiology and biochemistry of prokaryotes, White D., Drummond, T. J., and Fuqua C., 4th ed., 2007, Oxford University Press

- 1. Brock Biology of Microorganisms, Michael Madigan, John Martinko, Kelly Bender, Daniel Buckley, David Stahl, 14th ed., 2015, Pearson
- 2. The Physiology and Biochemistry of prokaryotes, White D., Drummond, T. J., and Fuqua C., 4rd ed., 2007, Oxford University Press

Title: IMMUNOLOGY

Course: SMIC0704

LEARNING OBJECTIVES

- 1. Understand maturation and activation of T/B cells
- 2. Understand immune response to infectious agents and in turn the immune evasion mediated by these agents
- 3. Know advances in innate immunity, immune tolerance, autoimmunity, vaccine, transplantation immunology, immunodeficiency diseases and cancer immunology

Number of lectures: 60

UNIT 1: T/B CELL DEVELOPMENT, MATURATION AND ACTIVATION 15 LECTURES

LEARNING OBJECTIVES

- 1. Understand the maturation, activation and memory generation for T and B cells.
- 2. Understand the concept of Immune tolerance.

1. T/B cell development

- Site of development
- Lineage Commitment
- Mechanisms of generation of TCR/BCR diversity
- Central and Peripheral Tolerance
- T_{reg} Cells

2. T/B cell activation and memory generation

- T/B cell activation and differentiation
- T/B cell memory generation

3. Use of Fluorescence-activated cell sorting in development and activation of lymphocytes

UNIT 2: ADVANCES IN INNATE IMMUNITY AND IMMUNE RESPONSE TO INFECTIOUS DISEASES 15 LECTURES

LEARNING OBJECTIVES

- 1. Know advances in innate immunity
- 2. Know the immune response to prion, viral, bacterial and parasite infections
- 3. Understand the microbial mechanisms of evading the immune system

1. Recent advances in Non-specific immunity

- Physiological and immunological barriers.
- Induced Cellular Innate Responses
 - i. TLRs
 - ii. NLRs
 - iii. CLRs
 - iv. Antimicrobial Peptides
 - v. Interferon
 - vi. Cytokines

5L

8L

2L

•	Phagocytosis	
٠	Inflammation	
٠	Interaction between Innate and Adaptive Immune system	
•	Autophagy	
2. Im	nune response to Infectious agents	4 L
٠	Prions	
٠	Viruses	
•	Bacteria	
•	Parasites	
3. Mie	crobial mechanisms of evading the immune system	2L
UNIT	3: IMMUNE SYSTEM AND HEALTH	15 LECTURES
LEAF	RNING OBJECTIVES	
	Understand the concept of autoimmunity	
	Know the advances in the fields of vaccines	
1. Au	toimmunity	5L
٠	Interplaying Factors	
٠	Triggering Factors	
٠	Mechanisms of Damage	
٠	Organ Specific Autoimmune Diseases	
٠	Systemic Autoimmune Diseases	
٠	Animal Models for Autoimmune Diseases	
٠	Proposed Mechanisms for Induction of Autoimmunity	
•	Treatment of Autoimmune Diseases	
2. Adv	vances in Immunization	10L
٠	Overview	
٠	Passive immunization and Antibody engineering	
٠	Active Immunization	
	i. Malaria vaccine	
	ii. HIV vaccine	
	iii. Pertussis vaccine	
	iv. HPV vaccine	
	v. Tuberculosis vaccine	

UNIT 4: CHALLENGES IN IMMUNLOGY

15 LECTURES

LEARNING OBJECTIVES

Know the advances in the fields of transplantation immunology, immunodeficiency diseases and cancer immunology

1. Transplantation and Transfusion Immunology	5L	
Antigens Involved in Graft Rejection		
Allorecognition		
 Graft Rejection-Role of APCs and Effector Cells 		
• Graft v/s Host Diseases		
Immunosuppressive Therapies		
Blood Transfusion		
i. ABO and Rh Blood Groups (revision)		
ii. Potential Transfusion Hazards		
iii. Transfusion Alternatives		
2. Immunodeficiency diseases	5L	
Primary Immunodeficiency		
• Defects in the Complement System		
Treatment Approaches for Immunodeficiency		
Animal Models of Primary Immunodeficiency		
Secondary Immunodeficiency and AIDS		
3. Cancer immunology	5L	
• The Immune Response to Cancer		
Cancer Immunotherapy		
CIA: Test, Presentation		
References:-		

- 1. Immunology Essential and Fundamental, Pathak, S. and Palan, U., 3rd ed., 2011, Capital publishing company.
- 2. Janeway's Immunobiology The immune system in health and disease, Murphy, M. K., Travers, P., Walport, M. and Janeway, C., 9th ed., 2017, Garland Science, 2011
- 3. The Immune Response to Infection, Kauffman, S. H. E., Rouse B.T., and Sacks D.L., 2011, ASM Press, Washington, USA
- 4. Kuby Immunology, Kindt, J. T., Osborne, A. B. and Goldsby, A. R., 6th ed., 2006, W.H. Freeman and company.
- 5. Kuby Immunology, Owen, J., Punt, J. and Stanford, S., 7th ed., 2013, International Edition, Macmillan Higher Education.
- 6. Mims' Pathogenesis of Infectious Disease, Mims, A. C., Nash, A. and Stephen, J., 5th ed., 2000, Academic Press.

- 7. Mims' Pathogenesis of Infectious Disease, Mims et al., 6th ed., 2015, Academic Press.
- 8. Current published papers/ reviews

Unit 2

- 1. Janeway's Immunobiology –the immune system in health and disease, Murphy, M. K., Travers, P., Walport, M. and Janeway, C., 6th ed., 2011, Garland Science.
- 2. The Immune Response to Infection, Kauffman, S. H. E., Rouse B.T., and Sacks D.L., 2011, ASM Press, Washington, US
- 3. Kuby Immunology, Kindt, J. T., Osborne, A. B. and Goldsby, A. R., 6th ed., 2006, W. H. Freeman and company.
- 4. Kuby Immunology, Owen, J., Punt, J. and Stanford, S., 7th ed., 2013, International Edition, Macmillan higher education.
- 5. Takeuchi, O. and Akira, S., Pattern recognition receptors and inflammation, 2010, Cell, 140: 805-820
- 6. Current published papers/ reviews

Unit 3

- 1. Arama, C. and Troye-Blomberg, M., The path of malaria vaccine development: challenges and perspectives, The journal of internal medicine, 2014, doi: 10.1111/joim.12223
- 2. Chen, Y.Z. and Dolin R., Novel HIV vaccine strategies: overview and perspective, 2013, Therapeutic Advances in Vaccines, (0)0-1-14
- 3. Kim, K.S., Park, S.A., Ko, K., Yi, S., Cho, Y.J., Current status of human papillomavirus vaccines, 2014, Clin Exp Vaccine Res;3:168-175
- 4. Kuby Immunology, Kindt, J. T., Osborne, A. B. and Goldsby, A. R., 6th ed., 2006, W. H. Freeman and company.
- 5. Kuby Immunology, Owen, J., Punt, J. and Stanford, S., 7th ed., 2013, International Edition, Macmillan higher education.
- 6. Rosalind Rowland1 and Helen McShane, Tuberculosis vaccines in clinical trials, Expert Rev Vaccines, 2011 May; 10(5): 645–658
- 7. Current published papers/ reviews

- 1. Kuby Immunology, Kindt, J. T., Osborne, A. B. and Goldsby, A. R., 6th ed., 2006, W. H. Freeman and company.
- 2. Kuby Immunology, Owen, J., Punt, J. and Stanford, S., 7th ed., 2013, International Edition, Macmillan higher education.
- 3. Roitt's Essential Immunology, Delves, J. P., Martin, J. S., Burton, R. D. and Roitt, . I., 12th ed., 2011, John Wiley and Sons.
- 4. Roitt's Essential Immunology, Delves et al, 13th ed., 2017
- 5. Current published papers/ reviews

MICROBIOLOGY

SMIC07PR

Semester 1 practical

LABORATORY SKILLS

- 1. Lab safety
 - Hand washing and hygiene
 - Effectiveness of disinfectants
 - Burner versus Biosafety cabinet
 - How to dispose off ethidium bromide, blood products, media components
 - Safety in handling chemicals (eg: acrylamide, ethidium bromide)
 - PPE
- 2. The principle of lab instruments, care, and handling.
 - Autoclave, hot air oven, incubator
 - Shaker, centrifuge, microscopes,
 - Biosafety cabinets, colorimeter, automated pipettes
- 3. Preparation of solutions and lab media
 - Molarity and Normality
 - Liquid and solid media, with and without indicators
 - Media with components to be separately sterilized, such as antibiotics
 - Preparation of slants, butts, and plates
- 4. Preparation of buffers
- 5. Determination of pK and pI value for an amino acid
- 6. Sterilization of heat sensitive material, Sterility check Efficiency of sterilization
- 7. Sub-culturing, lyophilization, glycerol-stock preparation
- 8. Industrial visit

SCIENTIFIC COMMUNICATION SKILLS

Referencing, Oral and poster presentation, Concept of plagiarism, summary writing

GENETICS

- 1. UV mutagenesis
- 2. Acridine orange mutagenesis
- 3. Penicillin enrichment technique and mutant isolation by replica plating (grid plate)
- 4. Ames test
- 5. Conjugation in bacteria
- 6. Problems on gene transfer mechanisms

VIROLOGY

- 1. Isolation and purification of coliphages from sewage
- 2. Study of One Step Growth Curve of Lambda phage / T4 Phage.
- 3. Isolation of host range mutants
- 4. Egg inoculation and cultivating animal virus in embryonated egg Demonstration
- 5. Problems on viral genetics

MICROBIAL BIOCHEMISTRY

- 1. Isolation of cholesterol and lecithin from egg yolk
- 2. Identification of fatty acids and other lipids by TLC/GC
- 3. Determination of degree of unsaturation of fats and oils
- 4. Identification of an unknown carbohydrate
- 5. Isolation of lactose from bovine milk
- 6. Estimation of total sugars by the phenol-sulphuric acid method
- 7. Isolation of glutamic acid from gluten
- 8. Determination of molar absorption coefficient (ϵ) of l-tyrosine
- 9. Determination of the isoelectric point of the given protein
- 10. Estimation of polyphenols/ tannins by Folin- Denis method
- 11. Diffusion studies of molecules across sheep RBCs
- 12. Adaptation of E. coli to anaerobiosis
- 13. Chemotaxis of Pseudomonas

IMMUNOLOGY

- 1. Separation of mononuclear cells from blood by Ficoll-Hypaque density gradient centrifugation, counting of viable cells by trypan blue.
- 2. Staining of blood smear
- 3. Study of virulence factors-Phagocytosis and Phagocytic index.
- 4. Horizontal electrophoresis of proteins Human serum
- 5. Immunoelectrophoresis
- 6. Determination of Rh Antibody titre
- 7. Major and Minor cross-matching of blood.
- 8. SRID: For detection of immune deficiency and Complement deficiency.
- 9. ELISA- qualitative and quantitative

CIA: Experimental, Primary research paper presentation, Instrument maintenance with SOP writing

References:

- 1. The Biology of Viruses, Voyles B. A., 2nd ed., 2002, McGraw-Hill higher education.
- 2. Medical Microbiology, Cruickshank R., 11th ed., 1965, E and S. Livingston Ltd.
- 3. Biosafety manual of the college
- 4. Textbook of Microbiology –Ananthnarayan and Paniker-10th ed.,2017, University Press
- 5. Microbial Genetics, Maloy, S.R.; Cronan, J.E.; Freifelder, David 2nd ed., 1994, Jones and Bartlett Publishers.
- 6. Molecular Cloning: A Laboratory Manual (3 Volume Set), J. Sambrook, E. F. Fritsch, T. Maniatis, 2nd ed., 1989, Cold Spring Harbor Laboratory Pr.
- 7. Microbiology, Davis, B.D; Dulbecco, R; Eisen, H.N. and Ginsberg, H.S.; 3rd ed., 1980 Harper International ed. NY.
- 8. Principles of Genetics, Snustad and Simmons, 6th ed., 2012, John Wiley and Sons Inc

- 9. Genetics: A Conceptual Approach, Benjamin Pierce 3rd ed., 2008, W. H. Freeman and Co
- 10. Genetics: A Conceptual Approach, Benjamin Pierce 5th ed., 2013
- 11. iGenetics- A Molecular Approach, Russell, P.J., 3rd ed., 2010, Pearson International ed.
- 12. Laboratory manual in biochemistry by Jayaraman J., 1981, New Age International Publishers
- 13. An introduction to practical biochemistry 3rd ed., 1998, David T Plummer, Tata McGraw Hill ed.
- 14. Experimental biochemistry –A student companion, B Sashidhar Rao, Vijay Deshpande, S. Deshpande, 2005, IK international Pvt. Ltd..
- 15. Microbial Physiology and Biochemistry Laboratory manual: A quantitative approach, David White, 1998
- Principles and techniques of practical biochemistry, 4th ed. (1998), Wilson K. and Walker J.(Ed.) Cambridge University Press, 1994
- 17. Principles and Techniques of Biochemistry and Molecular Biology, Wilson K and Walker J, 7th ed., 2011
- 18. Biochemical calculations, Segel I.R., 2nd ed., 2004, John Wiley and Sons
- 19. Textbook of Medical laboratory technology- by P B Godkar,1994, Bhalani Publishing House