

# St. Xavier's College (Autonomous) Mumbai

# Syllabus For 7<sup>th</sup> Semester Courses in M.Sc. Life Science (June 2018 onwards)

### Contents:

Syllabus (Theory and Practical) for Courses:

| ab (Theory and The |                                                 |
|--------------------|-------------------------------------------------|
| SLSC0701           | Cell Biology                                    |
| SLSC0702           | Scientific communication, Research methodology, |
|                    | Intellectual Property Rights, Entrepreneurship  |
| SLSC0703           | Biochemistry                                    |
| SLSC0704           | Laboratory Management and Analytical Techniques |
| SLSC07PR           | Practicals                                      |
|                    |                                                 |

Template for theory and practical question paper Evaluation and Assessment Grid

Percent revision: 2015-16: No revision 2016-17: No revision 2017-18: No revision 2018-19: 15% (0703), 50% (0704) and 40-50% revision in practicals 2019-20: No revision 2020-21: No revision

#### LIFE SCIENCE

#### M.Sc.

### Course No.: SLSC0701

#### **Title: Cell Biology**

#### **Learning Objectives:**

On completion of the course, the student must be able to:

- 1. Understand the structure and function of components of eukaryotic cells membranes, organelles and cytoskeleton
- 2. Describe the various types of cellular transport involved in movement of material into the cell and between various compartments of the cell.
- 3. Explain the concept of intercellular communication using diffusible solutes and cell membranes
- 4. Enlist stages of cell cycle and discuss the basis of its regulation
- 5. Summarize the causes and regulation of programmed cell death
- 6. Compare & contrast the various methods used to study cellular processes

#### Number of lectures: 60

| UNIT | I (15 lec                                                                           | tures) |
|------|-------------------------------------------------------------------------------------|--------|
| 1.   | Origin and Evolution of Cells                                                       | (1)    |
| 2.   | Limits of cellular compartment - The Plasma Membrane                                | (3)    |
| 3.   | Sub-cellular compartmentalization (with reference to evolutionary origin, structure | e, and |
|      | function) (Guided self-study) (4)                                                   |        |
|      | a. The Endomembrane System - ER, Golgi apparatus, Lysosome, Va                      | cuole, |
|      | Peroxisome                                                                          |        |
|      | b. Mitochondria                                                                     |        |
|      | c. Chloroplast                                                                      |        |
|      | d. Nucleus                                                                          |        |
| 4.   | Cytoskeletal Organization                                                           | (6)    |
|      | a. Microtubules, Microfilaments & Intermediate filaments : types, structur          | e and  |
|      | function                                                                            |        |
|      | b. The cytoskeleton and cell behaviour : cilia, flagella; cytokinesis               |        |
| 5. ] | Motor proteins – prototype structure & role in cellular cargo transport             | (1)    |
|      |                                                                                     |        |
| UNIT | (                                                                                   | -      |
| 1.   | Membrane Transport                                                                  | (6)    |
|      | a. Passive diffusion                                                                |        |
|      | b. Facilitated diffusion                                                            |        |
|      | c. Active transport – primary & secondary                                           |        |
|      | d. Transport of ions                                                                |        |
| _    | e. Endocytosis, Exocytosis, Bulk transport                                          |        |
| 2.   | Vesicular Transport Pathways                                                        | (6)    |
|      | a. ER to Golgi,                                                                     |        |
|      | b. Golgi to plasma membrane/ secreted out                                           |        |
|      | c. Golgi to lysosomes                                                               |        |
|      | Signal Sequences in Protein Targeting: nuclear, mitochondrial and chloroplast       | (1)    |
| 4. 0 | Overview of Protein Degradation Pathways                                            | (2)    |
|      |                                                                                     |        |

#### UNIT III

- 1. Cell signalling
  - a. Concept of signal transduction
  - b. Receptor types –G-protein receptor, enzyme coupled receptors (tyrosine kinase, serthr kinase), ionotropic receptors
  - c. Signalling pathways Adenylate Cyclase-cAMP, IP3-DAG, Calcium/Calmodulin
- 2. Intercellular interactions
  - a. Cell junctions need & organization
  - b. Types of junctions composition & function of occluding & adherens junctions, communicating junctions
  - c. Cell-ECM interactions Integrins & cell anchoring

#### UNIT IV

### (15 lectures)

(15 lectures)

(9)

(6)

(7)

(8)

- 1. Cell Cycle and its Regulation
  - a. An overview of Cell Cycle
  - b. Cyclin and Cyclin-dependant kinases, Cdk inhibitor proteins
  - c. Cell Cycle Check points
  - d. Cell Division Mitosis & Cytokinesis; Meiosis
- 2. Apoptosis
  - a. Cellular changes underlying apoptosis, Apoptosis-dependent developmental/physiological processes
  - b. Apoptotic pathways: Extrinsic and Intrinsic Pathways
  - c. Caspases as executioners of apoptosis, DNA fragmentation regulators.
  - d. Techniques for apoptosis detection: TUNEL, COMET assay, Flow Cytometry based assays
  - e. Imbalance between proliferation and apoptosis Endometrial Hyperplasia, neoplasia

### **References:**

- 1. Alberts B (2016) 'Molecular Biology of the Cell' Garland Science.
- 2. Karp G (2013) 'Cell Biology' Wiley.
- 3. Lodish H (2016) 'Molecular Cell Biology' W. H. Freeman & Co.
- 4. Cooper G (2015) 'The Cell: A Molecular Approach' Sinauer Associates Inc.
- 5. Watson J (2017) 'Molecular Biology of the Gene' Pearson.
- 6. Nelson D and Cox M (2017) 'Lehninger Principles of Biochemistry' W. H. Freeman & Co.
- 7. Voet D, Voet J and Pratt C (2016) 'Fundamentals of Biochemistry' Wiley.

LIFE SCIENCE

#### M.Sc.

#### Title: Scientific communication, Research methodology, Intellectual Property Rights, Entrepreneurship

#### **Learning Objectives:**

The objectives of this course are to enable a student to:

- 1. Comprehend and write a scientific research paper.
- 2. Use scientific software to analyze and present data for research.
- 3. Design, execute and statistically analyze experiments using the principles of scientific research methodology.
- 4. Understand Intellectual property rights and patent law applicable to bioentrepreneurship.
- 5. To convert an idea into a viable business model for entrepreneurship.

#### Number of lectures: 60

#### **UNIT I: Communication Skills**

- 1. Introduction to the structure of a scientific research paper
- 2. Reading a scientific research paper and construction of an abstract
- 3. Usage of software in writing research paper (to construct graphs, bibliography, etc.)
- 4. Writing a scientific research paper
- 5. Designing a poster/ MS-Powerpoint presentation from a paper.

#### **UNIT II: Research Methodology**

- 1. Introduction Basic research, Applied research, Need-based research
- 2. Identifying and defining the problem
- 3. Planning a research project
- 4. Literature search information sources, library resources books, journal, abstracts hand books, procedure manuals, encyclopaedia, annual reports, data banks, CDROMS, online literature search - internet access, websites, directories of information resources
- 5. Experimental design approaches to research design descriptive, correlational, experimental, semi-experimental, meta-analysis, pilot study
- 6. Progress of research Research communication use of statistical tools in presentation of research findings, need for peer-review, publication of research findings (impact factor, citation index)

### **UNIT III: Intellectual Property Rights**

- 1. Intellectual property rights: meaning, evolution classification and forms
- 2. Rationale for protection of IPRs importance of IPRs in the fields of science and technology
- 3. Patents concepts and principles of patenting patentable subject matter (Biotechnology and IPR - microorganisms as inventions, plant varieties, food security, genetic engineering, biodiversity, bioinformatics software protection, sharing of biological R&D material)
- 4. Procedure for obtaining patents rights of patents infringement of patent rights
- 5. Remedies for infringement of patent right Patentability and emerging trends (National and International scenario - IPO, TRIPs)

### **UNIT IV: Entrepreneurship**

Course No.: SLSC0702

## (15 lectures)

(15 lectures)

#### (15 lectures)

## (15 lectures)

- 1. Concept, definition, structure and types of entrepreneurships
- 2. Process of entrepreneurial development
  - a. Planning a New Enterprise
  - b. Policies and Schemes
  - c. Entrepreneur competency (leadership)
- 3. Product planning and development
  - a. Concept of projects, project management
  - b. Search for business idea opportunity identification, project selection and formulation
  - c. Design and network analysis Institutional interphase for enterprise eg. Entrepreneurship Development Institute of India (EDII), Small industries, Service institute, Banks and financial institutions
  - d. Project report and project appraisal (case study)
- 4. Ethical decision making, ethical dilemmas

#### **References**:

- 1. Robert A. Day, Barbara Gastel. (2011) "How to Write & Publish a Scientific Paper" *Greenwood*.
- 2. Vernon Booth, (2003) "Communicating in Science: Writing a Scientific Paper and Speaking at Scientific Meetings" *Cambridge University Press*.
- 3. Janice R. Matthews, Robert W. Matthews "Successful Scientific Writing: A Step-By-step Guide for the Biological and Medical Sciences" *Cambridge University Press*.
- 4. Purdue OWL and other online resources.
- 5. John W. Creswell, J. David Cresswell (2017) "Research Design: Qualitative, Quantitative, and Mixed Method Approaches" *Sage*.
- 6. Petter Laake, Haakon Breien Benestad, Bjorn Reino Olsen (2015) "Research Methodology in the Medical and Biological Sciences" *Elsevier*.
- 7. N Gurumani (2006) "Research Methodology for Biological Sciences" MJP Publishers.
- 8. Geoffrey Marczyk, David DeMatteo, David Festinger (2005) "Essentials of Research Design and Methodology" *John Wiley and Sons, Inc.*
- 9. Desai V (2011) "Small-Scale Industries and Entrepreneurship" *Himalayan Publishing House*.
- 10. Collins Ipand Lazier W (1992) "Beyond entrepreneurship" Prentice Hall.
- 11. Ganguli, P (2001) "Intellectual Property Rights" Tata McGraw Hill.

#### LIFE SCIENCE

#### M.Sc.

#### Course No.: SLSC0703

#### **Title: Biochemistry**

#### **Learning Objectives:**

On completion of the course, the student must:

- 1. Know the various physical forces that exist between molecules, the relative movements and interactions that arise due to these forces and the theories that explain them.
- 2. Understand fundamental thermodynamics and free energy changes that drive biochemical reactions.
- 3. Acquire a clear understanding of protein structure and folding, and its relation to protein function.
- 4. Comprehend enzyme kinetics and inhibition, and the role of coenzymes in enzyme function.
- 5. Understand metabolism, hormonal regulation and the association of metabolic disorders with biomolecules.

#### Number of lectures: 60

| UNIT I (15 le                                                                              | ctures)  |
|--------------------------------------------------------------------------------------------|----------|
| 1. Introduction to Forces in Biology                                                       | (6)      |
| a. Van der Waals forces.                                                                   |          |
| b. Electrostatic and double layer forces (DLVO theory).                                    |          |
| c. Hydration and hydrophobic forces.                                                       |          |
| d. Polymer-mediated tethering forces (steric, bridging and depletion forces).              |          |
| e. Formation of micelles and liposomes.                                                    |          |
| 2. Concepts of Solute Movement in Cells and Tissues                                        | (3)      |
| a. Brownian motion.                                                                        |          |
| b. Diffusion and osmosis.                                                                  |          |
| c. Viscosity (Reynolds numbers, motors and propulsion).                                    |          |
| 3. Thermodynamics                                                                          | (6)      |
| a. Free energy- standard free energy and its relation to temperature & pressure.           |          |
| b. Near equilibrium conditions for biochemical reactions.                                  |          |
| c. Redox reactions & high energy phosphate bonds.                                          |          |
| UNIT II (15 le                                                                             | ctures)  |
| 1. Protein structure– primary, secondary, super-secondary, tertiary & quaternary structure |          |
| <ol> <li>Protein folding:</li> </ol>                                                       | (6)      |
| a. Levinthal paradox                                                                       | (0)      |
| b. Models of protein folding                                                               |          |
| c. Role of GroEL-ES system in <i>in vivo</i> protein folding                               |          |
| 3. Supramolecular assembly – T-even phage /Lipid Bilayer / Quadruplex DNA/ Pr              | otein or |
| enzyme assembly                                                                            | (2)      |
| 4. Co-operativity in protein function – Hb – $O_2$ binding, muscle contraction.            | (2)      |
| 5. Function of multi-subunit protein – ATCase enzyme / PFK enzyme.                         | (2)      |
| 5. I unction of multi-subunit protein – Ar case enzyme / I I K enzyme.                     | (4)      |

1. General principles of enzyme catalysis – acid-base, covalent, metal-ion assisted. (2) 2. Kinetics of single substrate enzyme-catalysed reactions: (3) a. Michaelis-Menten equation, Kinetic studies using MM plot b. Lineweaver Burk plot and Eadie Hofstead plot 3. Kinetics of allosteric enzyme-catalysed reactions: Hill's equation, Hill's coefficient and its significance. (2) 4. Enzyme inhibition: reversible, irreversible, allosteric (2) (Competitive, Uncompetitive, Non-competitive) 5. Role of coenzymes in enzyme function: Mechanism of action of any 2 coenzymes, (3) Examples of reactions involving all the coenzymes derived from water soluble vitamins. **UNIT IV** (15 lectures) 1. Basic cellular metabolism (schematics only). (9) a. Carbohydrates: Glycolysis, HMP shunt, TCA cycle, Gluconeogenesis, Glycogen metabolism b. Lipids: Synthesis and breakdown of TAGs & fatty acids; synthesis and utilization of ketone bodies and their significance in pregnancy, diabetes mellitus, starvation, alcoholism and in weight loss programs c. Amino acids: Deamination, transamination, Urea cycle, inborn errors in the metabolism of amino acids (Phenylketonuria/Alcaptonuria) d. Significance of ATP in metabolism 2. Hormonal regulation and integration of metabolism. (1) 3. Metabolic disorders (as guided study/assignments/presentations) (2) For example: Diabetes mellitus (endocrine), Hepatic dysfunction (alcohol-induced cirrhosis), Anorexia (psychosomatic), Dyslipidemia/Hypercholesterolemia (dietary)]] 4. Physiological role of Fat-soluble vitamins and disorders associated with their deficiency/excess (3)

#### References

- 1. Gilbert HF (1992) "Basic Concepts in Biochemistry: A Student's Survival Guide" *McGraw-Hill*.
- 2. JM Berg, JI Tymoczko, L Stryer, GJ Gatto, Jr. (2010) "Biochemistry" WH Freeman and Company.
- 3. Nelson D and Cox M (2017) 'Lehninger Principles of Biochemistry' W. H. Freeman & Co.
- 4. Voet D, Voet J and Pratt C (2016) 'Fundamentals of Biochemistry' Wiley.
- 5. N Price and L Stevenson (2000) "Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins" *Oxford University Press*.
- 6. M Dixon and EC Webb (1964) "Enzymes" Academic Press.
- 7. Quarterly Reviews of Biophysics 34, 2 (2001), pp. 105–267. 2001 Cambridge University Press. DOI: 10.1017/S0033583501003687 Printed in the United Kingdom

#### LIFE SCIENCE

M.Sc.

#### Course No.: SLSC0704

#### **Title: Laboratory Management and Analytical Techniques**

#### **Learning Objectives:**

To introduce the students to:

- 1. Basic clinical laboratory setup as well as GLP and accreditations
- 2. Various approaches used in the study of biological samples.
- 3. The principles of separation and investigation applied to analysis of biological samples.
- 4. Current trends in calibrations and certifications association with instrumentation techniques (to be covered in practicals).

| UNIT    | I: Lab    | oratory setup and management                                     | (15 Lectures) |
|---------|-----------|------------------------------------------------------------------|---------------|
| 1.      | Introdu   | action to Clinical Laboratory                                    | (8)           |
|         | a.        | Standard Clinical Laboratory set up                              |               |
|         | b.        | General Safety guidelines                                        |               |
|         | с.        | Decontamination and Disinfection.                                |               |
|         | d.        | Sterilization techniques                                         |               |
|         | e.        | Hazard analysis, Safety Data Sheets, and First Aid Kit.          |               |
| 2.      | Total Q   | Quality Management:                                              | (7)           |
|         | a.        | Quality Control mechanisms, (Internal and External)              |               |
|         | b.        | Preparation of lab report and cataloguing.                       |               |
|         | с.        | Basic principles of accreditation of labs, (ISO and NABL).       |               |
|         | d.        | GLP                                                              |               |
| UNIT    | II: Sep   | paration methods                                                 | (15 Lectures) |
| Princip | ple, inst | trumentation and application in biomolecular analysis of         |               |
| 1.      | Chron     | natography                                                       | (6)           |
|         | a.        | Column, thin layer, paper, adsorption                            |               |
|         |           | Partition, ion exchange, affinity chromatography, Size exclusion | n             |
|         | c.        | HPLC, GC, Reverse Phase                                          |               |
| 2.      | Electr    | ophoresis                                                        | (5)           |
|         | a.        | Agarose, SDS PAGE, Capillary Electrophoresis                     |               |
|         | b.        | 2D PAGE, Pulse Field Gel Electrophoresis                         |               |
|         | c.        | Western Blot, Southern Blot                                      |               |
| 3.      | Centri    | fugation                                                         | (4)           |
|         | a.        | Factors affecting centrifugation                                 |               |
|         | b.        | Differential centrifugation                                      |               |
|         | c.        | Density gradient                                                 |               |
|         | d.        | Analytical centrifugation                                        |               |

#### UNIT III: Techniques based on Microscopy and Electromagnetic Spectrum

Principle, instrumentation and application of

- 1. Microscopy
  - a. Light microscopy, Dark Field, Phase Contrast, DIC
  - b. Fluorescence, Confocal microscopy
  - c. Electron Microscopy (Scanning and Transmission), specimen preparation, Cryo TEM
  - d. Scanning Probe microscopy (AFM)
- 2. Spectrometry
  - a. Colorimeter and UV-Visible spectrophotometer, Beer-Lamberts Law
  - b. Qualitative and quantitative methods of analysis-protein estimation methods, Hypo and hyper-chromicity coupled assays
  - c. Fluorescence and Luminescence analysis
  - d. Turbidimetry

#### UNIT IV: Techniques for composition, sequence or structure determination

(15 lectures)

(15 Lectures)

(7)

(8)

| Principle, instrumentation, technique and application of |     |
|----------------------------------------------------------|-----|
| 1. Atomic absorption and emission spectroscopy           | (2) |
| 2. ORD/CD spectroscopy                                   | (1) |
| 3. IR and Raman Spectroscopy                             | (2) |
| 4. Mass Spectroscopy (Biomolecules)                      | (3) |
| 5. X-Ray Diffraction                                     | (3) |
| 6. NMR spectroscopy                                      | (2) |
| 7. Next Generation Sequencing for Nucleotides            | (2) |
|                                                          |     |

#### **References**:

- 1. Godkar, P.B. Godkar, P.D. (2014) "Textbook of Medical Laboratory Technology (Set of 2 Volumes): Clinical Laboratory Science and Molecular Diagnosis" *Bhalani Publishing House*.
- 2. Skoog, D.A., Holler, F.J., Crouch S.R. (2018) "Principles of Instrumental Analysis" *Cengage Learning*.
- 3. Sheehan, D. (2010) "Physical Biochemistry: Principles and Applications" Wiley-Blackwel.
- 4. Garcia L.S. (2014) "Clinical Laboratory Management" *American Society for Microbiology Press*.
- 5. McPherson R.A., Pincus, M. R. (2017) "Henry's Clinical Diagnosis and Management by Laboratory Methods" *Elsevier*.
- 6. Manz, A., Dittrich, P.S., Pamme, N., Iossifidis, D. (2015) "Bioanalytical Chemistry" *Imperial College Press*.
- 7. Schalkhammer, Thomas G.M. (2002) "Analytical Biochemistry" Springer (India) Private Limited
- 8. Cooper, T.G. (2009) "The Tools of Biochemistry" Wiley.
- 9. Spector, David L. & Goldman, R.D. (2006) "Basic Methods in Microscopy: Protocols And Concepts From Cells: A Laboratory Manual" Cold Spring Harbor Laboratory Press.
- 10. Pawley, James B. (2006) "Handbook of Biological Confocal Microscopy" Springer Science Plus Business Media.
- 11. Chandler, Douglas E. & Roberson, Robert W. (2009) "Bioimaging: Current Concepts in Light and Electron Microscopy" *Jones and Bartlett Publishers*.
- 12. Wilson, K. & Walker, J. (2013) "Principles and Techniques of Biochemistry and Molecular Biology" *Cambridge University Press*.

#### Practicals:

#### Course: SLSC07PR

Protein Biochemistry and Biostatistics

- 1. General Laboratory Instructions, Safety and Rules
- 2. Making of Solutions.
- 3. Calibration, Accuracy and Precision
  - a. Quality assurance; IQ, OQ, PQ and DQ
  - b. GLP and GMP compliance
  - c. Classification of Instrumental methods
  - d. Methods of expressing accuracy and precision
  - e. Calibration of Micropipettes, Glass pipettes and other Measuring containers.
- 4. Use of general lab instruments and their calibration and care: pH meter, Balance etc.
- 5. Study of Henderson-Hasselbach Equation and calculations for Buffer preparation
- 6. Estimation of Protein by various methods. Comparison of the sensitivity of estimation methods
- 7. Comparison of different methods for cell-lysis (yeast cells/bacterial cells and estimation of protein content in cell free supernatant)
- 8. Protein Purification: extraction and semi-purification of an enzyme (Beta-Amylase/Acid Phosphatase/ beta-galactosidase)
  - a. Crude enzyme assays and determination of optimum conditions
  - b. Cell lysis
  - c. Ammonium sulfate fractionation and dialysis
  - d. Column chromatography (Ion exchange/ Gel filtration)
  - e. Determination of Specific activity.
  - f. Enzyme kinetics
  - g. Effect of inhibitors on enzyme reaction
  - h. Immobilization of enzyme/ yeast (invertase) and determination of enzyme activity
- 9. Electrophoresis of Proteins
  - a. Native PAGE (Activity staining: LDH/Amylase)
  - b. SDS PAGE (CBB/ Silver Staining)
  - c. Demonstration of Western Blot

#### **Template of Theory Question paper**

#### M.Sc. Life Science

#### 0701, 0702, 0703, 0704

#### <u>CIA I</u> – 20 marks, 45 mins.

**Objectives/Short questions** 

#### <u>CIA II</u> – 20 marks

Test (45 mins.)/ Survey/ Assignment/ Presentation/ Poster/ Essay/ Review

#### End Semester exam - 60 marks, 2 hours

Choice is internal- within a unit and could be between 50% to 100%

# M.Sc. Life Science Practical Evaluation Course: SLSC07PR

**CIA & End Semester Practical Exam** CIA ESE Total marks: 200 80 marks 120 marks

For CIA: (20 marks journal + 60 marks experiments/viva etc)

|        | M.Sc. I Life Science Exam Grid Semester 7 |                              |               |                             |       |  |
|--------|-------------------------------------------|------------------------------|---------------|-----------------------------|-------|--|
| Course | Exam                                      | Knowledge and<br>Information | Understanding | Application and<br>Analysis | Total |  |
|        | CIA                                       | 10                           | 6             | 4                           | 20    |  |
| 0701   | CIA                                       | 10                           | 6             | 4                           | 20    |  |
|        | End semester                              | 30                           | 20            | 10                          | 60    |  |
| Course | Exam                                      | Knowledge and<br>Information | Understanding | Application and<br>Analysis | Total |  |
|        | CIA                                       | 10                           | 5             | 5                           | 20    |  |
| 0702   | CIA                                       | 10                           | 5             | 5                           | 20    |  |
|        | End semester                              | 30                           | 20            | 10                          | 60    |  |
| Course | Exam                                      | Knowledge and<br>Information | Understanding | Application and<br>Analysis | Total |  |
|        | CIA                                       | 10                           | 5             | 5                           | 20    |  |
| 0703   | CIA                                       | 10                           | 5             | 5                           | 20    |  |
|        | End semester                              | 30                           | 20            | 10                          | 60    |  |
|        |                                           |                              |               |                             |       |  |
| Course | Exam                                      | Knowledge and<br>Information | Understanding | Application and<br>Analysis | Total |  |
| 0704   | CIA                                       | 7                            | 7             | 6                           | 20    |  |
|        | CIA                                       | 7                            | 7             | 6                           | 20    |  |
|        | End semester                              | 20                           | 20            | 20                          | 60    |  |

#### **Department of Life Science and Biochemistry**